Quantum Criticality and Superconductivity in Spin and Charge Systems

Siddharth S Saxena

Shoenberg Laboratory for Quantum Matter, Cavendish Laboratory, University of Cambridge, UK

Cavendish Laboratory

Research and Teaching in the Department of Physics
${ }^{1 m}$

Snapshot

- 100-120 MSci (4-year) undergraduates annually
- 60-70 PhD's annually
- ~ 250 postdocs and research staff
- ~ 80 research support staff
- 75 teaching faculty +33 staff level fellows
- $£ 14 \mathrm{M}$ annual research grant expenditure
- Institute of Astronomy - ~20 faculty, 50 graduate students, 50 postdocs
- 37 Noble Prizes

The Role of Physics

- Practical Application of Physics Research for the Benefit of Society
- The Intellectual Underpinning of Physics and all Cognate Sciences
- The Development of Individuals with the Ability to Relate Phenomena to Mathematical Structures
- Physics for Its Own Sake - Insights into the Nature of Our Physical Universe

The Balance of the Programme

- The core of the Laboratory's programme is experimental physics, supported by theory.
- The policy of the Department is to maintain a very powerful core of fundamental physics in all its diversity.
- The Department encourages applied and collaborative research in response to the evolution of the basic disciplines and the interests of the staff.

The Cavendish Laboratory Research organisation

- High Energy Physics
- Astrophysics
- Biological and Soft Systems
- Semiconductor Physics
- Optoelectronics
- Microelectronics Research Centre
- Quantum Matter
- Physics and Chemistry of Solids
- Theory of Condensed Matter

The policy of the Laboratory is to delegate as much of the responsibility for the research programme to the research groups as possible. They each have their own administrative staffs.

The central administration aims to allow the research groups to concentrate upon research and teaching.

Shoenberg Laboratory for Quantum Matter

Cavendish Laboratory,

University of Cambridge, UK

The QM

f-metal superconducting heterostructures (PRL 2012)

Fermi surface of cuprate super-

Structural quantum conductors (multiple Nature, PRL, PNAS ..ctitical point (PRL 2012

Ferroelectric closure domains
(Nature Comm. 2013

Marginal Fermi liquid (Nature 2008)

Quantum spin liquid in $\mathrm{LiCuSbO}_{4}($ PRL 2012)

High pressure devices (collaboration Diamond)

Sample handling on the microscale (spin-offs Camcool)

Collaborators

Cambridge

S.Rowley, L. Spalek, Christos Panagopoulos, S. Haines, P. Nahai-Williamson, M. Dean, R. Smith, A. Kusmartseva, C. Liu, Sam Brown, P. Alireza, H.J. Kim, M. Sutherland, G. Lonzarich
G. Csanyi, P. Littlewood, A. Nevidomskyy, C. Pickard and B. Simons University College London
M. Ellerby, C. Howard, T. Weller, N. Skipper, A. Waters, K. Rahnejat, N. Shuttleworth, D. McMorrow

Lausanne
A Akrap and Laszlo Forro
Paris and Milan
Matteo d'Astuto, Claudia Dallera
Sherbrooke
Nicolas Doiron-Leyraud, Louis Taillefer

Quantum Phase Transitions

Neighbourhood of quantum phase transitions in metals - emergent states

f-electron metal

 p-wave superconductor in heavy fermion UGe_{2} on border of ferromagnetism. Also superconducting $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$
Other metallic itinerant-ferromagnets which become superconducting

- URhGe, $\mathrm{T}_{\mathrm{C}}=250 \mathrm{mK}$ (Aoki i eal. Nature 2001)
- $\mathrm{Fe}, \mathrm{T}_{\mathrm{cmax}}=2 \mathrm{~K}$ (Shimizu et al. Nature 2001)
- Ulr, $\mathrm{T}_{\mathrm{C}}=140 \mathrm{mK}$ (Akazawa etal. JPCM 2004) $^{\text {(}}$
- UCoGe (N.T. Huy, et. al. PRL 2007)
- Possibly New Pnictides, Chalcogenides etc

Neighbourhood of quantum phase transitions in metals - emergent states

f-electron metal
d-wave superconductivity on border of heavy fermion antiferromagnetism

Superconductivity on border of charge density wave transition in TiSe_{2}

$$
\text { CeIn }_{3}: \rho \sim T^{3 / 2}
$$

Walker et al. (1997), ..

$$
\mathrm{CeMIn}_{5}, \mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}: \rho \sim T
$$

Sarrao et al. (2001), Hegger et al. (2000), ...

Graphite Intercalates

- Two dimensional hexagonal sheets of Carbon are held together by van der Waals forces.
- Can introduce metal atoms in between the sheets.

- This process can produce superconductivity. For example $\mathrm{C}_{8} \mathrm{~K}$ superconducts at 0.15 K .
- Reports on superconductivity in Graphite Sulpher Composites and Nanotubes

Superconductivity in $\mathrm{C}_{6} \mathrm{Yb}$ and $\mathrm{C}_{6} \mathrm{Ca}$

Weller, T., Ellerby, M., Saxena, S. S., Smith, R. \& Skipper, N. Nature Phys. 1, 39-41 (2005)

Why is this interesting?

Compound	Electron doping	$\mathbf{T}_{\mathbf{c}}$
$\mathrm{C}_{8} \mathrm{~K}$	$1 / 8$	0.15 K
$\mathrm{C}_{6} \mathrm{Li}$	$1 / 6$	-
$\mathrm{C}_{6} \mathrm{Ca}$	$1 / 3$	11.5 K
$\mathrm{C}_{6} \mathrm{Yb}$	$1 / 3$	6.5 K
$\mathrm{C}_{3} \mathrm{Li}$	$1 / 3$	-
$\mathrm{C}_{2} \mathrm{Li}$	$1 / 2$	1.9 K

Graphite band structure

Csányi, G., Littlewood, P. B., Nevidomskyy, A. H., Pickard, C. J. \& Simons, B. D. Nature Phys. 1, 42-45 (2005).

Band Structure - interlayer band

Csányi, G., Littlewood, P. B., Nevidomskyy, A. H., Pickard, C. J. \& Simons, B. D. Nature Phys. 1, 42-45 (2005).

Position of interlayer band

Csányi, G., Littlewood, P. B., Nevidomskyy, A. H., Pickard, C. J. \& Simons, B. D. Nature Phys. 1, 42-45 (2005).

Experimental Techniques

Miniature anvil cell

Susceptibility measurements in an anvil cell
-Low Temperature (down to T~30 mk)
*High magnetic fields (up to 18 T)
*Pressures up to ~120 Kbar

A good filling factor allows
Measurements of small samples With small magnetic moments

ESRF beamline ID26, December 2005
Transition in $\mathrm{C}_{6} \mathrm{Yb}$ may be attributable to a shift in the charge state as observed in other Yb compounds. Tentative Resonant X-ray scattering by Claudia Dalleria and Matteo d'Astuto reveals a shift in the charge state between 1.4 and 2.7 GPa from $2+$ to $3+$.

Electron charge transferred per carbon

Neighbourhood of quantum phase transitions in metals - emergent states

d-electron metal
Spin skyrmion state in MnSi on border of ferromagnetism

f-electron metal p -wave superconductor in heavy fermion UGe_{2} on border of ferromagnetism. Also superconducting $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

Examples of Quantum Phase Transitions in Ferroelectric Materials

Displacive Type (cf. Intinerant magnetism)

What's different / interesting about the Ferroelectric QCP?

- Quantum criticality from the lattice
- Quantum critical fluctuations observed up to 50 K !
- Simplest cases provide a Text-book paradigm of QC in the solid-state
- Emergence of new low temperature phases near QCP?

Review of metallic itinerant ferromagnets

3D Itinerant Ferromagnet

- Dissipative Modes (Paramagnons)

$$
\chi_{\mathbf{q} \omega}^{-1}=\chi_{\mathbf{q}}^{-1}\left(1-i \frac{\omega}{\Gamma_{\mathbf{q}}}\right)
$$

- Relaxation Rate

$$
\Gamma_{\mathbf{q}}=\gamma q\left(\chi^{-1}+c q^{2}\right)
$$

$$
F=\frac{a}{2} M^{2}+\frac{b}{4} M^{4}+c(\nabla M)^{2}
$$

$$
M=M(r, t)
$$

$$
T>T_{C}
$$

$$
T<T_{C}
$$

Mean-Field Predictions for Ferroelectric Charge Fluctuations

3D Cubic Ferroelectric

- Propagating Modes (Soft-Optic Phonons)

$$
\chi_{\mathbf{q} \omega}^{-1}=\chi_{\mathbf{q}}^{-1}\left(1-\frac{\omega^{2}}{\Omega_{\mathbf{q}}^{2}}\right)
$$

- Dispersion

$$
\Omega_{q}=\sqrt{\Delta^{2}+v^{2} q^{2}}
$$

$$
\begin{aligned}
& F=\frac{a}{2} P^{2}+\frac{b}{4} P^{4}+c(\nabla P)^{2} \\
& \text { + dipole_interactions }
\end{aligned}
$$

$$
P=P(r, t)
$$

Predicted Phase Diagram for Low Temperature Ferroelectrics

Quantum Fluctuations of charge polarization in four dimensions. Simplest ferroelectrics - Text-Book paradigm of QCP in the solid-state

Classical Regime $\chi^{-1} \sim T$

Paraelectric

$T_{C} \sim\left(1-p / p_{c}\right)^{1 / 2}$ Quantum Critical

 $\xrightarrow[\text { Tuning Parameter }]{\text { 'Conventional' Quantum }}$ 'Conventional' QuantumFerroelectric

Measurements

- 45 mK adiabatic demagnetisation fridge fitted with miniature coaxial cables connected to high precision capacitance bridge
- Sensitivity $10^{-18} \mathrm{~F}$, frequencies up to a few MHz
- Dielectric constant, polarization, pyroelectric current
- Large electric fields ~ $50 \mathrm{kVcm}^{-1}$
- 30 kbar pressure cell available with coaxial cables into high pressure region (accuracy 5×10^{-2} kbar)

SrTiO_{3}

Experiment

Self-consistent phonon model

Close qualitative AND quantitative agreement with simple model for quantum critical point without freely adjustable parameters.

$$
\chi^{-1}=a+(10 / 3)\left(s_{0} k_{B}^{2} b \Delta^{2} / 12 \hbar a v^{2}\right) T^{2}
$$

KTaO_{3}

Experiment

Self-consistent phonon model

Close quantitative agreement with simple model for quantum critical point without any freely adjustable parameters

Unconventional Power Law

SrTiO_{3}

T^{2} power law observed in quantitative agreement with model without freely adjustable parameters

Quantum Critical Fluctuations up to ~ 50 K

SrTiO_{3} and KTaO_{3}

- Simple cubic Perovskite structures at room temperature
- Transition metal oxide insulators
- Clean and well studied materials close to displacive instability
- Naturally exist close to quantum critical point (QCP) without the need for pressure tuning

Strontium Titanate crystal pairs

Discovery of New Low Temperature Regime in SrTiO_{3} and KTaO_{3} Connected with QCP

- Possible Explanation involves coupling to acoustic phonons near QCP when $T \ll \Delta$

- Predicted by D.E. Khmel'nitskii and V.L. Shneerson, Sov. Phys. - Solid State, 13, 687 (1971)!

$$
\Delta F=(\nabla \phi) P^{\beta}
$$

- See also Palova, Chandra and P. Coleman (2008)

Outlook: Multiferroic Quantum Criticality

Multiferroics (eg. EuTiO3) are ideal systems in which to study the Quantum Critical Fluctuations of coupled spin and charge order parameters by tuning the respective transitions to absolute zero.

Leszek Spalek, S. Rowley, M.Shimuta, T. Katsufuji, C. Panagapoulos, S.Saxena
(A major collaboration with Heraklion)

EuTiO_{3} - the basics

- Rare-Earth Transition metal oxide
- Magnetic insulator
- Reported to be simple cubic perovskite structure to lowest temperatures

Titanium

$\mathrm{Eu}^{2+} \mathrm{Ti}^{4+} \mathrm{O}_{3}{ }^{2-}$ - An Antiferromagnet

- Magnetic $\mathrm{Eu}^{2+}\left(4 \mathrm{f}^{f}\right)$ atoms with $\mathrm{S}=7 / 2\left(7 \mu_{\mathrm{B}}\right)$
- Antiferromagnetic ordering below $\mathrm{T}_{\mathrm{N}}=5.5 \mathrm{~K}$
- Nearest neighbor coupling: $J_{1}=-0.07 \mathrm{~K}$

A Quantum Paraelectric

S. Kamba et al., Eur. Phys. Lett. (2007)

- Breakdown of classical behavior at low temperatures
- Expected transition avoided
- No ordering observed similar to SrTiO_{3}

A Magnetoelectric

T.Katsufuji and H. Takagi, PRB (2001)

- Coupling observed between the electric and magnetic subsystems
- Dielectric constant strongly enhanced with magnetic field

EuTiO ${ }_{3}$ Pressure Tuning

A gradual suppression of the Neel temperature

Outlook: Multiferroic Quantum Criticality

Reintroducing charge carriers ferroelectric metals

- Looking to the future we imagine that quantum ferroelectric fluctuations may mediate effective electron-electron interactions in crystals supporting mobile charge carriers.
- By adding carriers into incipient or weakly ferroelectric materials, superconductivity is commonly observed.
- For example Nb doped or oxygen reduced SrTiO_{3}
- Superconductivity in 2D layer at $\mathrm{SrTiO}_{3} / \mathrm{LaAlO}_{3}$ oxide interface
- Superconductivity in SrTiO_{3} when exposed to UV light
- Ionic liquid gated SrTiO_{3} and KTaO_{3}

Others including the ferroelectic semiconductors -> GeTe, SnTe

Gated KTaO_{3} and SrTiO_{3}

$\mathrm{SrTiO}_{3} / \mathrm{LaAlO}_{3}$ oxide interface

Discovery of metastable phase transition in Pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$

Collaborators

Cavendish Laboratory, University of Cambridge:
Dr. H.J. Kim, D.Y. Kim
Seoul National University:
Saehwan Chun, Prof. Kee Hoon Kim
Rutgers University:
H. T. Yi, Prof. Sang-Wook Chung.

Depart. Of Chemistry, University of Cambridge:
Dr. J. E. Davies.

Structure of $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$

Magnetic structure of $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$

2-dimensional Frustrated antiferromagnetic spin liquid phase

The ratio of $J^{\prime} / J=0.34$

Tokiwa et al. PRB 73, 134414 (2006)

Magnetization of unpressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$

Pressurized process

1. $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ was put into the hydrostatic pressure cell and pressurized above a 3 kbar.
2. Sample was kept in the pressure cell for a few days at room temperature.
3. The sample was taken out from the pressure cell.
4. Magnetization of the pressurized sample was measured using SQUID magnetometer under ambient pressure ($\mathrm{P}=0 \mathrm{kbar}$) .

Comparison between Unpressurized and Pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$

Pressing time dependence of phase transition

Magnetization of Pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ under $\mathrm{P}=0$ kbar

Similar behavior of Helimagnet magnetization

Fg. 1. Temperature dependence of the magnetization under the magnetic field along the hexagonal $a-b$ plane in $\mathrm{Cr}_{1}{ }_{1} \mathrm{NbS}_{2}$ -

Fig. 3. Magnetization process under the magnetic field along the hexagonal $a-b$ plane in $\mathrm{Cr}_{1 / 3} \mathrm{NbS}_{2}$.

Fig. 4. Theoretical magnetization curve based on the lattice chiral $X Y$ model in: (a) temperature dependence and (b) magnetic field dependence.
Y. Kousaka et al. (2009)

X-ray diffraction results at RT under $\mathrm{P}=0$ kbar

	Unpressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}(\mathrm{i})$	Pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}(\mathrm{ii})$	(ii)-(i)
$\mathrm{a}(\AA \dot{\AA})$	$9.7652(4)$	$9.7663(4)$	$0.0011(4)$
$\mathrm{b}(\AA \dot{\AA})$	$7.6338(3)$	$7.6094(3)$	$\mathbf{- 0 . 0 2 4 4 (3)}$
$\mathrm{c}(\AA \dot{)})$	$12.3858(5)$	$12.4146(5)$	$\mathbf{0 . 0 2 8 8 (5)}$
$\mathrm{V}\left(\AA^{3}\right)$	923.31	922.6	-0.71

c-axis \quad b-axis

distance	Unpressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}(\mathrm{i})$	Pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ (ii)	(ii) - (i)
$1-2$	7.6338	7.6094	$\mathbf{- 0 . 0 2 4 4 (3)}$
$1-3$	7.2747	7.2805	$\mathbf{0 . 0 0 5 8 (6)}$

$$
J^{\prime} / J \backsim<0.34
$$

- Structure of pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ is slightly distorted.
- Magnetic interaction of pressurized $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ may transit into metastable magnetic structure. ($\mathrm{J} / / \mathrm{J}$ is changed).

Summary

- Observation of new metastable magnetic phase in pressurized frustrated antiferromagnet $\mathrm{Cs}_{2} \mathrm{CuCl}_{4}$ driven by low pressure.
- Crystal structures does not changed but the lengths of b - and c axis are slightly changed.
- It is considered to be due to the change of coupling competition between J and J^{\prime}.

Border of Order: A Quantum Wild

Automated Temperature-Field-Pressure Tuning

Cryogen-Free Pulse Tube with Magnetic Refrigerator \& Variable Pressure System
Cavendish Laboratory, CamCool Ltd IHT Kazakhstan, CHT Uzbeksitan

Diamond Anvil with Sensing Microcoil Protected by Diamond Overcoat

(b)

Expanded View of 0.3 mm Culet with Sensing Microcoil
(c)

After
Encasing with
Diamond Layer

DD Jackson, et. al., Phys. Rev. B (2005) 184416

Technology Focus

Creating a research and innovation platform
88 Noble Prize Winners on one hand
6.5 Billion Dollars of Venture Capital on the other hand

Development Contextualisation

From Technology Transfer \rightarrow Technology development

Cambridge Innovation Vision

Nurture, both, organic and induced technology development pathways

Support innovation at both industrial and individual scale

Nurture talent, both locally and internationally

Human Capital Development, Technological Advancement and Environmental Sustainability must operate from the same platform

Eurasia Sci-Tech Platform Initiative

The primary objective of the CIS Sci-Tech Platform initiative is to establish the basis for the technological advancement and sustainable long-term growth of the Central Asian economies

The initiative looks at the three key determinants of economic growth: Labour, Capital and Technology and conducts in-depth review of the current state of these determinants to guide establishment of technology clusters

Examples are The Tashkent Centre for High Technology, Partnership with Kazakh National Wealth Fund companies. New Projects in Kyrgyzstan and Azerbaijan.

Tashkent Centre for High Technologies

A unique centre offering the latest technical services, training and innovation advise

A human capital development platform for training Uzbek scientist, engineers and technology entrepreneurs

A high-end research hub for physical, chemical, biological and engineering sciences

Cambridge \& UK academics, business persons and entrepreneurs will provide training and advise

First step towards creating a innovation eco system

Tashkent Centre for High Technologies

A Company called Cantabrigia Advisors Ltd. (www.cantabrigiaadvisors.com) was launched to interface between Cambridge Enterprise, Cambridge University Technical Services, Cambridge Central Asia Forum and Uzbekistan Academy of Sciences, Ministry of Education to deliver the CHT

To initiate the project the Uzbek government has committed more than 25 million euros for the latest scientific equipment and a further amount for creating building and management infrastructure and more than a million euros for training and education of scientific staff

Presidential Decree in October 2011 gives us a full go ahead!

Tashkent Centre for High Technologies

Asymmetry in Global Science and Technology

On one side the Western/Northern systems of education are purported to be the Best!

While on the other side it fails to produce both good enough and enough skilled labour for the business and institutions in The Western countries themselves

This discrepancy is largely overcome by importing both the students and the researchers from emerging economies of Asia and Eurasia

This generates a philosophical and practical anomaly in the form of the highly trained supply is coming from places marked as inferior in delivery of desired education and training!

Summary

- Quantum Critical Regime offers frame work for new discoveries.
- Led to the case of magnetically mediated superconductivity and first example of itinerant electron ferromagntic superconductor is discovered.
- Magnetism and Low Dimensionality are found as physical attributes which aid superconductivity at elevated temperatures.
-This road map has led us to the very different case of Graphite Intercalates and Quantum Critical Behaviour of Ferroics and Multiferroics
- Non invasive tuning parameter like high-pressure not only makes new physics tractable, but can also serve as a tool for new material design.

Key Publications

Superconductivity in graphite intercalated compound $\mathrm{C}_{6} \mathrm{Yb}$ at 6.5 K and $\mathrm{C}_{6} \mathrm{Ca}$ at 12 K (Highest of any graphite and Ce, Yb or U based compound) T. Weller et al. Nature Physics, Vol. 1, pp 39-41

Superconductivity in itinerant electron ferromagnet UGe_{2}
(First example of superconducting pairing of electrons in an itinerant ferromagnet)
S.S. Saxena et, al. Nature, Vol. 406, pp. 587-92

Prediction and possible explanation of superconductivity in high pressure phase of Iron (Anisotropic pairing as only very pure specimen superconduct. High magnetic susceptibility) S.S. Saxena, P.B. Littlewood, Nature, Vol. 412, pp. 290-291

Possible explanation of superconductivity in non centro-symmetric magnet $\mathrm{CePt}_{3} \mathrm{Si}$ (Magnetic non centro-symmetric materials possibly have exotic mixed-state pairing) S.S. Saxena, P. Monthoux, Nature, Vol. 427 pp 799-799

Marginal Breakdown of the Fermi Liquid State on the Border of Metallic Ferromagnetism (Osbervation of a Singular Fermi Liquid) R. P. Smith et. al. Nature, Vol. 450, pp 1220-1223

