Fractional spinonic excitations in a 1D quantum antiferromagnet

$\text{SrCo}_2\text{V}_2\text{O}_8$

Zhe Wang
University of Augsburg

Quantum Magnets Workshop
Kolymbari, Crete, 17. September 2015
Acknowledgement

Augsburg

Michael Schmidt
Alois Loidl
Joachim Deisenhofer

Berlin

Anup Kumar Bera
Nazmul Islam
Bella Lake

Nijmegen

Dmytro Kamenskyi
Papori Gogoi
Hans Engelkamp

San Diego

Jianda Wu
Shenglong Xu
Wang Yang
Congjun Wu

DFG
Deutsche Forschungsgemeinschaft

TRR 80
From Electronic Correlations to Functionality

EMFL
European Magnetic Field Laboratory
* Experimental techniques: THz/Infrared spectroscopy
 * Quantum spin-dimer system

* 1D spin-1/2 Ising-like XXZ antiferromagnet SrCo$_2$V$_2$O$_8$
 * Realization of spinon confinement [PRB 91, 140404(R) (2015)]
 * Tuning the spinon excitations by external magnetic fields
Spin-1/2 dimer: singlet and triplet

- **Spin gap** \(\Delta = J_0 \)
- **Ground state**: spin singlet state
- **Excited state**: spin triplet state
- **Cr\(^{5+}\)**: 3d\(^1\), \(S = 1/2 \)
- **Monoclinic**
- **Spin dimer**
- **Singlet-triplet**

\[J_0 \mathbf{S}_1 \cdot \mathbf{S}_2 \]

\(J_0 > 0 \): antiferromagnetic
Zeeman splitting

\[J_0 \mathbf{S}_1 \cdot \mathbf{S}_2 + g \mu_B H (S_1 + S_2)^z \]

\(J_0 > 0 \): antiferromagnetic

Excited state: spin triplet state

Spin gap \(\Delta = J_0 \)

Ground state: spin singlet state

Zeeman term

\[|S, S_z\rangle \]

\[|1, +1\rangle \]

\[|1, 0\rangle \]

\[|1, -1\rangle \]

Intra-triplet

\[|0, 0\rangle \]
Magnetic excitations

Selection rules:

Intra-triplet mode: \(h\omega \perp H \)

\(\Delta S = 0, \quad \Delta S_z = \pm 1 \)

- Conservation of \(S \)
- Magnetic-dipole active

Singlet-triplet mode

\(\Delta S = 1 \)

Violation of \(S \) conservation!

\(\rightarrow \) Dzyaloshinskii-Moriya interaction

\(D \cdot (S_1 \times S_2) \)

spin-orbit coupling
Symmetry and selection rule

$\text{Ba}_3\text{Cr}_2\text{O}_8$

$D = 0$

Inversion center

T. Moriya, Phys. Rev. 120, 91 (1960)
Symmetry and selection rule

$\text{Ba}_3\text{Cr}_2\text{O}_8$

Dynamic Dzyaloshinskii-Moriya: instantaneously symmetry broken due to optical phonons

$$
\sum_{i,\alpha,\beta} E_i^{\omega} A_{\alpha\beta} (S_{i1} \times S_{i2})_{\beta}
$$

Symmetry and selection rule

Every symmetry operation associates a dimer in one layer to another dimer in the neighboring layer.

$$ T_{12} \equiv S_1 \times S_2 $$

- $T_{12}^a \rightarrow T_{1'2'}^a$, $q=0$ in-phase mode
- $T_{12}^b \rightarrow -T_{1'2'}^b$, $q=\pi$ anti-phase mode

Selection rule

<table>
<thead>
<tr>
<th>$E^\omega \setminus H$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$0(A_{ab}) + \pi(A_{ac})$</td>
<td>$\pi(A_{aa}, A_{ac})$</td>
<td>$0(A_{ab}) + \pi(A_{aa})$</td>
</tr>
<tr>
<td>b</td>
<td>$0(A_{bc}) + \pi(A_{bb})$</td>
<td>$0(A_{ba}, A_{bc})$</td>
<td>$0(A_{ba}) + \pi(A_{bb})$</td>
</tr>
<tr>
<td>c</td>
<td>$0(A_{cb}) + \pi(A_{cc})$</td>
<td>$\pi(A_{ca}, A_{cc})$</td>
<td>$0(A_{cb}) + \pi(A_{ca})$</td>
</tr>
</tbody>
</table>
Experimental results: selection rule and spin-phonon coupling

Ba$_3$Cr$_2$O$_8$

<table>
<thead>
<tr>
<th>$E^o \setminus H$</th>
<th>a_h</th>
<th>b_h</th>
<th>c_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_h</td>
<td>$0 + \pi$</td>
<td>[Fig. 2(c), 3(b)]</td>
<td></td>
</tr>
<tr>
<td>b_h</td>
<td>$0 + \pi$</td>
<td>[Fig. 3(c)]</td>
<td></td>
</tr>
<tr>
<td>c_h</td>
<td>$0 + \pi$</td>
<td>[Fig. 3(d)]</td>
<td></td>
</tr>
</tbody>
</table>

Dynamical Dzyaloshinskii-Moriya interactions enabled instantaneously due to optical phonons

spin-phonon coupling

ZW et al, PRB 89, 174406 (2014) with O. Cépas, S. Zvyagin
* Powerful technique for investigating magnetic interactions and dynamics
 characteristic energy range of 1 - 100 meV (THz and FIR spectral range)

* Various tunable parameters:
 • Polarization → selection rules, anisotropies → symmetry
 • Magnetic field → exchange interactions/anisotropies
 → spin hamiltonian
 → classical/quantum phase transitions
 → emergent phenomena
 • Temperature → phase transitions, thermal fluctuations
 • ……
THz time-domain spectroscopy (THz-TDS)

Spectral range: 1 – 16 meV (0.25 – 4 THz)

Temperature range: 4.2 – 300 K

TeraView Ltd
High-field electron spin resonance (ESR) transmission spectroscopy

Optical Table Diagram

- **Source (BWOs)**
- **Detector**
- **f**: 0.1-1.4 THz (monochromatic)
- **e^i**: polarization
- **H**: 7 T
- **e^o**: polarization
- **2 – 300 K**
High-field Fourier transform infrared spectroscopy (FTIR)

Michelson interferometer

Bitter magnet (32T)

Bruker Optik

1.5 – 300 K

© HFML Nijmegen
Outline

* Experimental techniques: THz/Infrared spectroscopy
 * Quantum spin-dimer system

* 1D spin-1/2 Ising-like XXZ antiferromagnet SrCo$_2$V$_2$O$_8$
 * Realization of spinon confinement
 * Tuning the spinon excitations by external magnetic fields
Crystalline and magnetic structure of $\text{SrCo}_2\text{V}_2\text{O}_8$

- Tetragonal structure
- Screw chain along the c axis
- Edge-sharing CoO$_6$ octahedra
- 4 Co$^{2+}$ ions per unit cell

![Diagram of SrCo$_2$V$_2$O$_8$ structure]

Energy levels for Co$^{2+}$ (3d^7):
- 4P
- 4A_2
- 4F ($I = 3, s = 3/2$)
- 4T_2
- 4T_1 ($I \approx 1, s = 3/2$)

- Free ion
- Cubic field
- Spin-orbit coupling

$\tilde{S} = 5/2$
$\tilde{S} = 3/2$
$\tilde{S} = 1/2$
Crystalline and magnetic structure of $\text{SrCo}_2\text{V}_2\text{O}_8$

1. Realization of the 1D XXZ spin-1/2 model

\[J \sum_i \left[S_i^z S_{i+1}^z + \epsilon (S_i^x S_{i+1}^x + S_i^y S_{i+1}^y) \right] \]

- \(J > 0 \)
- Antiferromagnetic nearest-neighbor exchange interaction

\[0 < \epsilon < 1 \]
- Ising-like exchange anisotropy

Longitudinal: parallel to the z direction (along the c axis)

Transverse: perpendicular to the z direction (along the a axis)

Crystalline and magnetic structure of SrCo$_2$V$_2$O$_8$

2. Interchain coupling:
 • 3D Néel antiferromagnetic ordering below $T_N \sim 5\text{K}$

Neutron diffraction:

$J'/J < 10^{-2}$
Spinon confinement in 1D Ising-like antiferromagnet
Spinon excitations of Ising chain

Ising antiferromagnetic spin-1/2 chain

One spin flip \rightarrow Two spinons

$$\Delta S^z = \pm 1$$

$$E = J$$

Highly degenerate excited states
Spinon excitations of XXZ chain

Ising-like (XXZ) spin-$1/2$ antiferromagnetic chain

\[J \sum_{i=1}^{N} [S_i^z S_{i+1}^z + \epsilon(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y)] \]

\[0 < \epsilon < 1 \text{ (Ising-like)} \]

Parabolic dispersion relation
(close to the Γ point, approximate)

Interchain exchange interaction: confinement potential

$T < T_N$

Two-spinon bound states

J': interchain coupling

1D Schrödinger equation of two-spinon bound states

One-dimensional Schrödinger equation:

\[-\frac{\hbar^2}{\mu} \frac{d^2 \varphi}{dz^2} + \lambda |z| \varphi = (E - 2E_0) \varphi\]

Solution:

\[E_j = 2E_0 + \zeta_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3}\]

\(\zeta_j\) are the negative zeros of the Airy function

Linear dependence:
Characteristics of confined spinons

Result I: Realization of spinon confinement
Spinon absorption spectra

THz Time domain signal

Frequency domain signal

SrCo$_2$V$_2$O$_8$

$T_N \sim 5K$

Fourier Transform

ZW et al PRB 91, 140404(R) (2015)
Spinon absorption spectra

Series of excitations:
- Below T_N : magnetic order

Characteristic features:
- Energy increases
- Intensity decreases
- Energy difference decreases

$T_N \sim 5\text{K}$

$\text{SrCo}_2\text{V}_2\text{O}_8$

ZW et al PRB 91, 140404(R) (2015)
Series of confined spinons

One-dimensional Schrödinger equation with linear confinement potential:

$$-\frac{\hbar^2}{\mu} \frac{d^2 \varphi}{dz^2} + \lambda |z| \varphi = (E - 2E_0) \varphi$$

Solution:

$$E_j = 2E_0 + \zeta_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3}$$

ζ_j are the negative zeros of the Airy function

Discussion: selection rule

- Two-spinon bound state $S = \pm 1$: odd number of spin flips
- Two-spinon bound state $S = 0$: even number of spin flips

both series observed by neutron scattering

Result II: magnetic-field tuning

Longitudinal magnetic field
... in a *longitudinal* magnetic field

High-field ESR \(H \parallel z \)

\[
\text{SrCo}_2\text{V}_2\text{O}_8 \quad T < T_N
\]

ZW et al PRB 91, 140404(R) (2015)
… in a *longitudinal* magnetic field

High-field ESR $H \parallel z$

Linear field dependence described by a single Zeeman term

$$\pm g_\parallel \mu_B H S$$

$g_\parallel = 5.5 \quad S = 1$

(Distortion of CoO$_6$ octahedra)

ZW et al PRB 91, 140404(R) (2015)
Split of bound states in longitudinal magnetic field

\[H \parallel z \]

- Higher-energy confined spinons determined from linear extrapolation of field dependence
- Two-spinon bound state doubly degenerate at zero field and split in finite longitudinal field
- Two-spinon bound state \(S = \pm 1 \)

\[E_j = 2E_0 + \zeta_j \chi^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3} \]

ZW et al PRB 91, 140404(R) (2015)
4-spinon continuum, excitations of the critical spin-liquid phase, etc

- Two pairs of bound-spinons continuum to be checked (e.g. linewidth)?
- Excitations in the critical region?
- Field dependence in BaCo$_2$V$_2$O$_8$
Result II: magnetic-field tuning

Transverse magnetic field
in the antiferromagnetic phase

\[H \parallel x \quad T < T_N \]

ZW et al, unpublished
in the antiferromagnetic phase

One-dimensional Schrödinger equation with linear confinement potential:

\[-\frac{\hbar^2}{\mu} \frac{d^2 \varphi}{dz^2} + \lambda |z| \varphi = (E - 2E_0)\varphi\]

\[E_j = 2E_0 + \zeta_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3}\]

ZW et al, unpublished
in the antiferromagnetic phase

\[E_j = 2E_0 + \zeta_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3} \]
in the antiferromagnetic phase

\[E_j = 2E_0 + \zeta_j \lambda^{2/3} \left(\frac{\hbar^2}{\mu} \right)^{1/3} \]
Low temperature phase diagram of \(\text{BaCo}_2\text{V}_2\text{O}_8 \) in transverse magnetic fields

\(\text{BaCo}_2\text{V}_2\text{O}_8 \): critical field \(H_c \sim 9 \text{ T} \) at 1.5K

\(\text{SrCo}_2\text{V}_2\text{O}_8 \): critical field \(H_c \sim 7 \text{ T} \) at 1.5K

S. K. Niesen, Th. Lorenz et al. PRB 87, 224413 (2013)
in the disordered phase

\[H \parallel x \]

Field dependence:

- \(\alpha \) evolves from confined spinons
- \(\beta_+ , \beta_- \) are degenerate at zero field and split in finite field
- \(\alpha, \beta_- \) avoid crossing at high fields above \(22T \)

ZW et al, unpublished
Summary

* Observation of confined spinon excitations in the 1D XXZ antiferromagnet SrCo$_2$V$_2$O$_8$
 → linear confinement potential by interchain coupling
 → described by one-dimensional Schrödinger equation
* Tuning of spinon excitations by magnetic fields
 Longitudinal magnetic field
 → linear dependence in the ordered phase
 Transverse magnetic field
 → non-linear field dependence