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We investigate, both analytically and numerically, diffusion-controlled drug release from composite spherical
formulations consisting of an inner core and an outer shell of different drug diffusion coefficients. Theoretically
derived analytical results are based on the exact solution of Fick's second law of diffusion for a composite sphere,
while numerical data are obtained using Monte Carlo simulations. In both cases, and for the range of matrix pa-
rameter values considered in this work, fractional drug release profiles are described accurately by a stretched
exponential function. The release kinetics obtained is quantified through a detailed investigation of the depen-
dence of the two stretched exponential release parameters on the device characteristics, namely the geometrical
radii of the inner core and outer shell and the corresponding drug diffusion coefficients. Similar behaviors are re-
vealed by both the theoretical results and the numerical simulations, and approximate analytical expressions are
presented for the dependencies.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Composite matrices are increasingly gaining interest in the field of
controlled drug delivery and their future pharmaceutical potentials
are expected to be vast. Several studies have already been carried out
for composite beads [1,2], multi-layer tablets [3] and capsules [4],
core/shell microspheres [5–7], composite planar layered matrices [8,9]
and coated pellets [10], among others, pointing out fundamental advan-
tages over their conventional monolithic counterparts. For instance,
composite matrices can be used for sequential release of more than
onedrug at a time, or to avoid chemical incompatibilities of their formu-
lation components by physically separating them with an inert barrier
[11]. In addition, and perhaps more importantly, composite matrices
seem to be inherently advantageous in terms of achieving optimum
drug release kinetics by combining layers with various release profiles,
while suppressing the initial “burst effect” [9].

In this work, we focus on diffusion-controlled drug release from
composite spherical devices, consisting of an inner core and an outer
shell. This type of geometry, introducing additional design parameters
nt, University of Patras, Rio GR-
9368.

versity of Oxford, Parks Road,
to the formulation (i.e. relative sizes and relative drug diffusion coeffi-
cients of inner and outer structures), enriches the possibilities in
terms of pharmacokinetics, controlled release rate and, ultimately, de-
livery performance.

Spherical carriers have long been favored in the field of drug deliv-
ery, particularly in nanoscale. Over the last few decades, an immense
body of literature has accumulated on drug delivery deviceswith spher-
ical or spherical-likemorphology, such as nanoparticles [12], liposomes
[13–15], polymersomes [16], dendrimers [17] and lipoproteins [18].
Most of the aforementioned systems consist of areas of different diffu-
sion coefficients and some can be conceptualized as composite spheri-
cal carriers, a realization which renders the present study widely
relevant.

The development and optimization of pharmaceutical products
are greatly facilitated by mathematical models [19]. Theoretical
modeling of drug delivery significantly improves the understanding
of the underlying physical mechanisms governing drug release,
while helping to determine the crucial parameters that regulate re-
lease rates. Moreover, the predictability offered by mathematical
models reduces the number of required experiments, saving time
and curtailing costs. With this in mind, we use here both theoretical
and numerical models to quantify drug release kinetics from com-
posite spherical formulations.

Several expressions have been proposed for the description of drug
release, such as the Higuchi law [20], the power-law or Peppas model
[21–23] and, more recently, a relatively simple formula containing a
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stretched exponential function, also known as the Weibull function,
Eq. (1) [24]

Mt

M∞
¼ 1− exp −αtb

� �
ð1Þ

whereα and b are constants andMt andM∞ are the cumulative amounts
of drug released at time t and infinite time, respectively.

Eq. (1) adequately fits the entire release kinetics and has been
successfully tested against a large set of experimental release data
[25] as well as numerous release curves obtained numerically
through Monte Carlo simulations [24,26–32]. However, when
expressed in this form, parameter α of Eq. (1) has units which de-
pend on exponent b (its units are inverse time in a non-integer
power b) and thus cannot correspond to any physical quantity.
This drawback prompted the suggestion for an alternative and
more natural way of using the stretched exponential function [33]
which reads

Mt

M∞
¼ 1− exp − t

τ

� �b
" #

ð2Þ

The form of Eq. (2) is preferred over that of Eq. (1) since the newly
introduced parameter τ, has a consistent unit of time and can also be
compared to other natural time scales of the controlled release
problem.

Here, we discuss drug release from composite spherical matri-
ces, when diffusion is the dominant release mechanism. Cases
where other mechanisms may be present, such as degradation or
swelling, are frequently encountered. Nevertheless, diffusion al-
ways emerges as a release mechanism and takes place at varying
degrees in all release processes. Various drug delivery models ad-
dressing the degradation [34] and swelling [35] mechanisms have
been proposed. In our model, we can also incorporate such mecha-
nisms by introducing additional parameters but, as a first step, we
present here a thorough investigation of drug release considering
only diffusion; we can examine the effects of other mechanisms
in future studies.

Hence, in this work we numerically calculate release profiles
from composite spheres using Monte Carlo simulations. The depen-
dence of diffusion-controlled release curves on the characteristics of
the drug delivery device is investigated in detail by fitting the nu-
merically obtained release profiles with Eq. (2) and presenting at a
quantitative level the variations of parameters τ and b on the geo-
metrical features and the drug diffusion coefficients. The acquired
results are compared with predictions derived from the exact ana-
lytical solution of Fick's second law of diffusion for composite spher-
ical systems with an initial homogeneous particle concentration. To
our knowledge, the analytical fractional release profile for this case
(see Eq. (3) below), has not yet been presented in the drug delivery
literature.

2. Methods

In this section, we first present the exact analytical release profile
obtained by the solution of Fick's second law of diffusion for a composite
spherical matrix, followed by a detailed description of the Monte Carlo
algorithm used in our numerical investigation.

2.1. Analytical solution of Fick's second law of diffusion for composite
spherical carriers

We assume a composite sphere of radius R2, consisting of an inner
core, 0≤ r b R1, and an outer shell, R1 ≤ r b R2, with drug diffusion coef-
ficients D1 and D2, respectively. Supposing that initially the formulation
has a homogeneous drug concentration, C0, using sink boundary
conditions the solution of Fick's second law of diffusion yields for the
fractional drug release:

Mt

M∞
¼ 1− 6

R2
r

X∞
n¼1

φ1 ynð Þ
φ2 ynð Þ exp −D1y

2
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R2
1
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 !
ð3Þ

where Rr ¼ R2=R1; k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
;
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and the sum in Eq. (3) is over the positive roots yn of

ky cot ky Rr−1ð Þ½ � þ k2y cotyþ 1−k2
� �

¼ 0: ð4Þ

It is pertinent to specify here that the above solution stands
when k(Rr − 1) is irrational. If k(Rr − 1) is rational, assuming
its lowest terms as equal to l / m, the fractional release solution,
Eq. (3), acquires an additional term on the right-hand side,
which reads

− 6
π2R2
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The derivation of the presented solution is outlined in the Appendix.

2.2. Monte Carlo algorithm used in numerical simulations

In order to simulate diffusion from a composite sphere of radius R2,
consisting of an inner core, 0 ≤ r b R1, and an outer shell, R1 ≤ r b R2
for various diffusion coefficient pairs (D1,D2), we follow a similar proce-
dure like that used in previous studies [24,32].

We first consider a cubic lattice of size L × L × L, where L = 2R2, and
define a spherical region of radius R2 inside it. Assuming a Cartesian coor-
dinate systemwith origin at the center of the L× L× L lattice,wedenote x,
y and z as the three coordinates that uniquely define a lattice site and con-
sider that only sites lying inside the composite sphere (x2+ y2+ z2 b R2

2)
can host particles. Next, we proceed by placing a number of drug particles
randomly on the sites of the composite sphere, avoiding double oc-
cupancy (assuming excluded volume interactions) until a fixed
particle concentration C0 is reached. All the numerical results pre-
sented below correspond to C0 = 0.5, meaning that only 50% of
the composite sphere sites are initially occupied by drug particles.
In a previous study [32], we saw that release results are indepen-
dent of initial concentration, which is consistent with other studies
[24]. This finding was also verified here by examining several indic-
ative cases.

Since our release device is not uniform, but consists of two areas
(inner core and outer spherical shell) of interchangeable higher and
lower diffusion coefficients,Dh=max(D1,D2) andDl=min(D1,D2), re-
spectively, we introduce a parameter denoted as q (0≤ q b 1) related to
the diffusivity ratio Dr = Dl / Dh, as q = 1 − Dr. Hence, when q = 0 we
have the limiting case of diffusive motion in a uniform spherical release
device (which has been studied in detail in Ref. [32]), whereas a non-
zero value of q allows us to simulate diffusion processes in composite
systems with different diffusion coefficients.

Diffusion is simulated by randomly selecting a drug particle at each
Monte Carlo step. If the particle is located in a higher diffusion



Fig. 1. (a) Theoretical fractional drug release curves derived from the exact solution of
Fick's second law of diffusion for composite spheres, Eq. (3), for fixed size ratio R2/R1 =
2 andD1/D2=0.1, 2, 5, 10, 20 (open symbols). (b) Numerically obtained fractional release
curves, Mt/M∞, versus Monte Carlo time for composite spheres of outer radius R2 = 32,
inner radius R1 = 16 and D1/D2 = 0.1, 1, 5, 10, 20 (open symbols). The initial concentra-
tion of drug particles, homogeneously distributed in the inner and outer structure, is C0=
0.5 in all numerical simulations. Solid curves, in both (a) and (b), are fits with the
stretched exponential function, Eq. (2).
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coefficient area, we try tomove it to a randomly selected nearest neigh-
boring site. However, if the particle lies in the lower diffusion coefficient
area it may stay immobile with a probability q, or we try to move it to a
randomly selected nearest neighboring site with a probability 1 − q
(this is practically done by drawing a random number in the region
[0,1); the move is attempted if it is greater than or equal to q). In both
cases, the potential move is allowed if the destination site is empty
but rejected if already occupied, in accordance with our hypothesis of
excluded volume interactions. As soon as a particle migrates to a site
lying outside of the composite sphere, i.e. when x2 + y2 + z2 ≥ R2

2, it
is removed from the system.

At eachMonte Carlo step, time is incremented by 1 / N(t),N(t) being
the number of drug particles still remaining in the system. We follow
the number of remaining particles as a function of time until the com-
posite sphere is completely empty. The results are statistically averaged
over 100 different realizations, using the same system parameters (ini-
tial particle concentration, geometrical features R1, R2 and diffusion co-
efficient ratio D1/D2), but different initial random distributions of drug
particles inside the composite sphere and different sequences of ran-
dom numbers.

We should state here that in our numerical investigation, inner and
outer radius values are given in units of the lattice spacing determining
the sites of the L × L × L cubic lattice, discussed above. In our simulation
model, this lattice spacing constitutes the length unit, lu, which can be
considered to be of the order of the linear dimensions of drug particles
or a larger, coarse-grained length scale, but in any case much smaller
than the size of the release matrix. Accordingly, the time unit tu of the
system, being the mean time required for a drug particle to move be-
tween two neighboring lattice sites, is related to lu through the average
velocity (at the appropriate length scale), vdif, of the diffusive particles as
tu = lu / vdif. Hence, in our Monte Carlo simulations, quantities
representing length (such as the outer and inner radii of the examined
composite spheres) are expressed in units of lu and all quantities
representing time (such as Monte Carlo time and parameter τ of
Eq. (2) when derived from fitting numerical data) are expressed in
units of tu. Lastly, diffusion coefficients are expressed in units of D0,
where D0 = (1/6)lu2/tu as estimated through the mean-square-
displacement of a single particle performing a random walk in a
three-dimensional cubic lattice (see the discussion before Eq. (11) in
Section 3.3 of Ref. [32]). In Subsection 3.2 we will return to these
observations.

3. Results and discussion

3.1. Theoretically and numerically obtained fractional release profiles

From a theoretical standpoint, we present fractional release curves,
when k(Rr − 1) is irrational, using the exact solution of Fick's second
law of diffusion, Eq. (3), as a function of the dimensionless time td =
tD1/R12. In this case, as seen from Eqs. (3) and (4), release kinetics de-
pends on two dimensionless parameters: Rr = R2 / R1 and D1/D2 (or,
equivalently, k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=D2
p

). Representative release curves obtained an-
alytically are depictedwith symbols in Fig. 1a for a fixed size ratio of R2 /
R1 = 2 and variousD1/D2 values, and in Fig. 2a for a fixed drug diffusion
coefficient ratio of D1 / D2 = 5 and different values of R2/R1.

In order to compare the theoretical predictions regarding release
profiles from composite spherical formulations with the numerically
obtained results, we fit the analytical fractional release curves with
the stretched exponential kinetics of Eq. (2) (solid curves in Figs. 1a
and 2a). The followingmethodologywasused for thesefits: a character-
istic dimensionless time t0 = 1/y12 was set, y1 being the first root of
Eq. (4), and theoretical data were obtained from Eq. (3) up to a di-
mensionless time tmax = 10t0, recorded at equidistant steps of t0/
100. These theoretical data were then fitted with Eq. (2). A similar
methodology was also implemented in a previous study [32]
in order to fit the analytical fractional release curve for a simple
homogeneous sphere. The only difference was that the characteris-
tic dimensionless time was then set as t0 = 1 / π2 due to the form
of the analytical solution of Fick's second law of diffusion in that
case (see Eq. (4) in Ref. [32]).

From a numerical standpoint, we ran a number of Monte Carlo
simulations, as described in Subsection 2.2, to investigate the de-
pendence of release kinetics from the size and diffusion coefficient
ratios of composite spherical devices. We examined composite
spheres with a homogeneous initial drug concentration C0 = 0.5,
of outer radius R2 = 32lu and R2/R1 ratios ranging from 1 to 8.
Composite spherical carriers of larger and smaller outer radius
values R2 were also examined yielding similar results to those pre-
sented here, apart from some cases (for particular values of R2/R1

and D1/D2) in relatively small formulations with R2 ~ 15lu which
may represent small size effects. Regarding the relative drug diffu-
sion coefficients, we examined cases where values of D1/D2 ranged
from 0.05 to 20, including cases where k(Rr − 1) was rational, in
order to indentify whether they exhibit a different qualitative de-
pendence; all cases were found to generate results that showcased
the same behaviors and were therefore smoothly incorporated into
continuous figures.

Release curves numerically obtained through Monte Carlo simula-
tions, like those indicatively shown with symbols in Figs. 1b and 2b,
were also fitted with the stretched exponential function, Eq. (2),
which was found to describe the entire release profile (see solid curves



Fig. 2. (a) Theoretical fractional drug release curves derived from the exact solution of
Fick's second law of diffusion for composite spheres, Eq. (3), for fixed diffusion coefficient
ratioD1/D2 = 5 and R2/R1= 1.0001, 1.5, 2, 4, 8 (open symbols). (b) Numerically obtained
fractional release curves, Mt/M∞, versus Monte Carlo time for composite spheres of outer
radius R2 = 32, inner and outer diffusion coefficients D1 = 1 and D2 = 0.2, respectively,
and inner radius values R1 = 32, 22, 16, 8, 4 (open symbols). The initial concentration of
drug particles, homogeneously distributed in the inner and outer structure, is C0 = 0.5
in all numerical simulations. Solid curves, in both (a) and (b), are fits with the stretched
exponential function, Eq. (2).
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in Figs. 1b and 2b), in accordance with previous studies [24,27–30,32].
Some relatively small deviations of the fitting were observed for the
smallest investigated values of D1/D2 (0.05 and 0.1) and for intermedi-
ate values of size ratio (1.14 ≤ R2/R1 ≤ 1.46). However, even for these
cases, Eq. (2) exhibits the correct asymptotic behavior (saturation at
unity) at relatively large times, providing quite a good overall descrip-
tion of the numerically obtained data.

In terms of comparison between the corresponding theoretical and
numerical fractional releases shown in Figs. 1a, b and 2a, b the reader
should note that in the theoretical cases, x-axis depicts the dimension-
less time tD1/R12. If one plots the numerical data as a function of Monte
Carlo timemultiplied byD1=R

2
1, the release curveswill reorder in aman-

ner similar to that exhibited by the corresponding theoretical ones.
Here, however, we show the numerical results in Figs. 1b and 2b as a
function of Monte Carlo time since these were the raw data used for
the fittings with the stretched exponential release Eq. (2).

Parenthetically, we should point out that numerical fractional re-
lease curves do not depend on C0. Indeed, for fixed size and drug diffu-
sion coefficient ratios, the numerically obtained release curves for C0 =
0.1, 0.5 and 0.9 were non-distinguishable. This is in accordancewith the
theoretical prediction of the analytical solution of the diffusion equation
(ignoring inter-particle interactions) and with Monte Carlo simulations
of drug release from simple cylindrical and spherical devices presented
in Refs. [24] and [32], respectively.

Fitting both the analytically and numerically obtained release curves
with Eq. (2), we calculate the dependence of the stretched exponential
parameters τ and b on the characteristics of the composite spherical car-
rier, namely the radii of the inner core and outer shell (R1 and R2) and
the corresponding drug diffusion coefficients (D1 and D2). The derived
dependencies of τ and b are presented in Subsections 3.2 and 3.3,
respectively.

3.2. Dependence of the stretched exponential parameter τ on the geometrical
characteristics and the drug diffusion coefficients

Parameter τ of the stretched exponential function, Eq. (2), is a time
parameter and, as such, it is expressed in units of time. In the analytical
release curves presented above, we considered the dimensionless time
td = tD1/R12, meaning that time was measured in units of R12/D1. There-
fore, in our analytical investigation, by fitting the exact solution of Fick's
second law of diffusion, Eq. (3), with the stretched exponential function
(following the procedure recounted in Subsection 3.1), we obtained the
dimensionless values τd= τD1/R12 of the stretched exponential parame-
ter τ.

However, the numerical release curves are plotted versus Monte
Carlo time, measured in units of tu (mean time required for a particle
tomove between neighboring lattice sites). Hence, to acquire the corre-
sponding numerical τd values, comparable to the analytically derived
ones discussed previously, we have to divide the stretched exponential
timeparameters resulting from thefittings of the numerical release pro-
files with Eq. (2), by a similar factor∝ R1

2/D1. Thus, since in our simula-
tionmodel the radius R1 has units of lu and the drug diffusion coefficient
D1 units of D0 = (1/6)lu2/tu, to enable a direct comparison between the
analytical and the numerical τd values we divide the numerically ac-
quired fitting results by the factor 6R12/D1. This factor of 6, resulting
from the considered unit system, was also used for comparing numeri-
cal and theoretical results of the stretched exponential parameter τ in
the case of homogeneous spheres [32].

Fig. 3a and b shows the variation of the dimensionless stretched ex-
ponential parameter τd with the drug diffusion coefficient ratio D1/D2,
derived from the analytical and the numerical approach, respectively.
Different symbols represent different values of size ratio R2/R1 (as
shown on the right-hand side of each plot). A linear dependence of τd
on D1/D2 is depicted in both figures.

A linear dependence of parameter τd is also evidentwhen plotting τd
versus (R2/R1)2. The theoretical and numerical results can be seen in
Fig. 4a and b, respectively,where different symbols correspond to differ-
ent values of the diffusion coefficient ratio D1/D2.

Based on these observations and taking into consideration the limit-
ing case of the simple homogeneous sphere (resulting here when R2 =
R1 or D1 = D2) the following relation is suggested:

τd ¼ c 1þ D1

D2

R2
2

R2
1

−1

 !" #
ð6Þ

where c = 0.054 for the theoretical results and c = 0.058 for the nu-
merical ones [32].

In Figs. 3a and 4a we have plotted this formula along with the theo-
retical values of τd, as derived from the analytical investigation. As seen,
the above relation describes the data very well. Restoring normal units,
in other words taking into account that τ = τdR12/D1, we obtain

τ ¼ 0:054
R2
1

D1
þ R2

2−R2
1

D2

 !
; independentof C0 : ð7Þ

Turning to the numerical calculations, plots of Eq. (6) having c =
0.058 along with the numerically acquired values of τd are presented



Fig. 3. (a) Theoretically and (b) numerically derived dimensionless time parameter τd =
τD1/R12 of the stretched exponential release, Eq. (2), as a function of D1/D2 for different
values of the geometrical ratio R2/R1 (symbols). Plots of Eq. (6) with c = 0.054 in (a)
and c = 0.058 in (b) are shown by solid lines. Solid symbols in (b) correspond to cases
where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=D2
p

is irrational and open symbols to cases where k is rational. Insets
show a magnification of the plots in the D1 b D2 region.

Fig. 4. (a) Theoretically and (b) numerically derived dimensionless time parameter τd =
τD1/R12 of the stretched exponential release, Eq. (2), as a function of (R2/R1)2, for different
values of the drug diffusion coefficients ratio D1/D2 (symbols). Plots of Eq. (6) with c =
0.054 in (a) and c = 0.058 in (b) are shown by solid lines. Solid symbols in (b) corre-
spond to cases where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=D2
p

is irrational and open symbols to cases where k is ra-
tional. Insets show a magnification of the plots for the smaller values of R2/R1.
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in Figs. 3b and 4b. Once again, data are described very well by the rela-
tion suggested.Multiplying τd by R12/D1, we obtain the following relation
in normal units for the stretched exponential parameter τ:

τ ¼ 0:058
R2
1

D1
þ R2

2−R2
1

D2

 !
; independentof C0 : ð8Þ

From Eqs. (7) and (8) we see that the theoretical dependence (de-
rived from the analytical solution of the diffusion equation) of the
stretched exponential time parameter τ on the characteristics of the
composite carrier is in quantitative agreement with the numerical one
(obtained through Monte Carlo simulations). For the limiting cases of
R1 = R2 = R or D1 = D2 = D, Eqs. (7) and (8) reduce to relations pre-
sented earlier (see Eqs. (6) and (11), respectively, in Ref. [32]) regarding
diffusion-controlled drug release from simple spherical formulations.

As mentioned in a previous study [32], a process exhibiting a
stretched exponential time dependence can be described by an average
characteristic time τav obtained through the relation τav ¼ Γ 1=bð Þ

b τ ,
where Γ(1/b) is the gamma function with argument 1 / b. The smaller
the exponent b, the larger the τav as compared to τ. Plugging the ac-
quired values of τd and b into this relation, we have calculated the di-
mensionless average characteristic times, τdav, describing the release
process from a composite spherical matrix. The variations of τdav with
D1/D2 and (R2/R1)2 obtained from a numerical standpoint are presented
in Fig. 5a and b, respectively. Insets on said figures present the corre-
sponding variations of the theoretical results.
3.3. Dependence of the stretched exponential parameter b on the geometrical
characteristics and the drug diffusion coefficients

The dependence of the stretched exponential exponent b on the
drug diffusion coefficient ratio D1/D2 as derived from fitting the analyt-
ical and the numerical release curves with Eq. (2) is presented in Fig. 6a
and b, respectively. Different symbols represent different values of size
ratio R2/R1. It can be seen that b increases with D1/D2, reaching a satura-
tion in most of the examined cases. Numerically obtained values of b
vary between a larger range than the corresponding theoretical ones.

Plotted results can be approximated with a function of the form b ¼
y0 þ A 1− exp − D1=D2ð Þ−1

B

� �h i
. For D1 = D2 this relation yields b = y0,

thus y0 can be determined by considering the expressions that provide
the stretched exponential parameter b in the limiting case of the simple
spherical carrier studied in Ref. [32]. Indeed, the analytical investigation
of diffusion-controlled drug release from simple spherical formulations
yielded b = 0.68 whereas numerically, b was found to follow the rela-
tion b ¼ 1:0

R=lu
þ 0:61 (see Eqs. (5) and (13), respectively, in Ref. [32]).

Therefore, the analytically derived data, presented in Fig. 6a, are
fitted with

b ¼ 0:68þ A 1− exp − D1=D2ð Þ−1
B

� �	 

ð9Þ

and the numerically acquired results, depicted in Fig. 6b, are fitted



Fig. 5.Dimensionless average characteristic time τdav obtained from the numerical simula-
tions (a) as a function of the drug diffusion coefficients ratio D1/D2, for different values of
R2/R1 and (b) as a function of (R2/R1)2 for different values of D1/D2. Insets exhibit the cor-
responding dependences as derived from the theoretical investigation. Same symbols in
main graphs and insets correspond to same parameter values, except for two cases in
the inset of (a) where squares correspond to R2 / R1 = 1.001 and cycles to R2 / R1 = 1.25.

Fig. 6. (a) Theoretically and (b) numerically derived exponent b of the stretched exponen-
tial release, Eq. (2), as a function of the drug diffusion coefficient ratio D1/D2, for different
values of R2/R1 (symbols). Solid curves showfitswith Eq. (9) in (a) andwith Eq. (10), hav-
ing set R2 = 32lu, in (b). Solid symbols in (b) correspond to cases where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=D2
p

is
irrational and open symbols to cases where k is rational.
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with

b ¼ 0:61þ 1:0
R2=lu

þ A 1− exp − D1=D2ð Þ−1
B

� �	 

ð10Þ

after substituting R2 with the outer radius value of our examined
composite spherical carriers, namely R2 = 32lu. The aforemen-
tioned fittings are depicted by solid curves in Fig. 6a and b.

In order to derive an approximate relation for the dependence of b
on the geometrical characteristics of the composite device, we examine
the variations of the fitting parameters A and B of Eqs. (9) and (10)with
the size ratio R2/R1. The resulting fitting parameters A and B of Eq. (9)
are plotted in Fig. 7a and b versus R2/R1. Similar dependencies are ob-
tained for the parameters A and B of Eq. (10) as regards the numerical
data. In both cases, the decreasing functions of A and B with R2/R1 are
approximated by Eqs. (11) and (12), respectively.

A ¼ G1 exp − R2=R1ð Þ−1
G2

	 

ð11Þ

B ¼ F1

ln R2
R1

� �F2
ð12Þ

The corresponding fittings for the theoretical results are shownwith
solid curves in Fig. 7a and b, yielding G1 = 0.27, G2 = 0.26, F1 = 0.19
and F2 = 0.92. Similar fits of parameters A and B of Eq. (10) for the nu-
merical results give G1 = 0.57, G2 = 0.43, F1 = 0.58 and F2 = 0.88.

Therefore, at a quantitative level, summarizing the approximate de-
pendencies of the stretched exponential parameter b on the size and
drug diffusion coefficient ratios, we get the rather complicated relations

b ¼ 0:68þ 0:27exp −

R2

R1
−1

0:26

0BB@
1CCA

2664
3775 1− exp −

D1

D2
−1

� �
ln R2

R1

� �0:92
0:19

0BB@
1CCA

2664
3775

8>><>>:
9>>=>>;

ð13Þ

from the analytical approach and

b ¼ 0:61þ 1
R2=lu

þ 0:57exp −

R2

R1
−1

0:43

0BB@
1CCA

2664
3775

� 1− exp −

D1

D2
−1

� �
ln R2

R1

� �0:88
0:58

0BB@
1CCA

2664
3775

8>><>>:
9>>=>>; ð14Þ

from thenumericalMonte Carlo approach.Note that in cases of practical
interest, where R2 ≫ lu, the second term on the right-hand side of the
last equation can be ignored as compared to the other terms.

Fig. 8a andb presents our theoretical andnumericalfindings, respec-
tively, regarding the dependence of exponent b of Eq. (2) on R1/R2 (data
shown by different symbols for the various values of D1/D2 examined),



Fig. 7.Dependence of thefitting parameters (a)A and (b) B of Eq. (9) on the geometrical size
ratio R2/R1 (symbols). Solid curves show fits with Eq. (11) in (a) and with Eq. (12) in (b).

Fig. 8. (a) Theoretically and (b) numerically derived exponent b of the stretched exponen-
tial release, Eq. (2), as a function of the geometrical size ratio R1/R2, for different values of
D1/D2 (symbols). Solid curves showplots of Eq. (13) in (a) and of Eq. (14)with R2=32lu in
(b). Solid symbols in (b) correspond to cases where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=D2
p

is irrational and open
symbols correspond to cases where k is rational.
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along with the corresponding plots of Eqs. (13) and (14) (shown by
solid curves). The R1/R2 dependence of b is particularly interesting,
presenting an extremum; amaximumwhenD1 /D2 N 1 and aminimum
whenD1 /D2 b 1. This common behavior, exhibited by both the theoret-
ical and the numerical results, is captured by the approximate
expressions of Eqs. (13) and (14), respectively. Quantitatively, the de-
scription is more accurate for the theoretical data, especially for the
smaller values of D1/D2 (less than 0.3).

Our analytical investigation yielded b values lying roughly between
0.4 and 0.9, whereas our numerically acquired values range from 0.3 to
1.2. A previous study [25] reported that when examining cases of diffu-
sion in normal Euclidian space, the exponent b was found in the region
between 0.69 and 0.75, while b values less than 0.69 were indicative of
fractal or highly disordered spaces, and values greater than 0.75were at-
tributed to more complicated release mechanisms; however, diffusion-
controlled release from composite matrices had not been considered. A
subsequent work [29], studying a two-dimensional square lattice with
a high diffusivity interior and low diffusivity thin layer around the bor-
der, found b values to be larger than 0.75, a result which is consistent
with that found here for composite spheres with D1 / D2 N 1.

3.4. Drug release from composite spheres with diffusion coefficients
differing by a few orders of magnitude

Numerically, we have also examined release from composite spher-
ical carrierswith drugdiffusion coefficient ratiosD1 /D2 in amuch larger
range of values covering six orders of magnitude (from 10−3 to 103).
Cases whereD1≫ D2 are of particular interest as they are relevant to li-
posomal release devices that have received increased attention for drug
delivery applications. Again, fittings to release data with the stretched
exponential function, Eq. (2), were very good when D1/D2 N 1, but
some deviations were observed for intermediate values of R2/R1, when
D1/D2 b 1.

Even with extreme values of D1/D2 considered, the observed behav-
ior of the stretched exponential parameter τ shows an excellent agree-
ment with Eq. (8), exhibiting once again the theoretically anticipated
behavior, as derived from the analytical solution of the diffusion
equation.

As regards the exponent b of Eq. (2), qualitatively we acquire the
same behavior, but the deviations from Eq. (14) are larger than those
presented in Fig. 8b. Moreover, it seems that themaximum (minimum)
value of b observed forD1/D2 N 1 (D1/D2 b 1) in the numerically obtained
release data shows a saturation asD1/D2 increases (decreases) at a value
around 1.5 (0.2).
4. Conclusions

Using both analytical and numerical models, we investigated
diffusion-controlled drug release from composite spherical devices.
The obtained fractional release curves and their dependence on the rel-
ative sizes and diffusion coefficients of the inner core and outer shell
have been quantified. Release kinetics was independent of the initial
drug concentration.
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Theoretical predictions were drawn from the analytical solution of
Fick's second law of diffusion for a composite sphere. Numerical data
were obtained through Monte Carlo simulations. Both the theoretical
and the numerical fractional release curves were found to be accurately
described by the stretched exponential function, Eq. (2), and approxi-
mate analytical relations for the dependencies of its two parameters, τ
and b on the release device characteristics have been presented.

The dimensionless stretched exponential time parameter τd was
shown to have a linear dependence on both D1/D2 and (R2/R1)2. After re-

storing normal units, τ is found proportional to R2
1

D1
þ R2

2−R2
1

D2

� �
. The expo-

nent b was found to increase with D1/D2, reaching a saturation in most
of the examined cases, while its dependence on R1/R2 is more complicat-
ed, presenting a maximum for D1/D2 N 1 and a minimum for D1/D2 b 1.

In the limiting case ofD1=D2 or R1= R2, the parameters τ and b de-
rived here reduce to the corresponding values found for the case of
diffusion-controlled release from simple homogeneous spherical matri-
ces [32].
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Appendix A

We present here the main steps in solving Fick's second law of diffu-
sion for a composite sphere of radius R2 (whose inner core, 0≤ r b R1, and
outer shell, R1 ≤ r b R2, have diffusion coefficients D1 and D2, respective-
ly) as well as the derivations of Eqs. (3) and (5). We assume a homoge-
neous particle concentration, C0, at t=0. Due to the spherical symmetry
of the problem, drug concentration depends solely upon the distance r
from the center of the composite sphere. Thus, if we denote as v1 and
v2 the drug concentrations within the inner core and the outer shell, re-
spectively, one has to solve the following set of equations

∂ rv1ð Þ
∂t ¼ D1

∂2 rv1ð Þ
∂r2

;0≤rbR1; t N 0
∂ rv2ð Þ
∂t ¼D2

∂2 rv2ð Þ
∂r2

;R1≤rbR2;t N0

ðA1Þ

Considering u1 = rv1 and u2 = rv2, the above equations become

∂u1

∂t ¼ D1
∂2u1

∂r2
;0≤rbR1; t N 0

∂u2

∂t ¼ D2
∂2u2

∂r2
;R1≤rbR2; t N 0 :

ðA2Þ

The continuity of the drug concentration and the balance of fluxes at
the interface between the inner core and the outer shell result in

u1 r ¼ R1ð Þ ¼ u2 r ¼ R1ð Þ;∀ tN0 and D1
1
r
∂u1

∂r ∂u1

r2

� �
j
r¼R1

¼ D2
1
r
∂u2

∂r −u2

r2

� �
j
r¼R1

;∀ tN0

respectively.
The boundary conditions to be satisfied are u1(r = 0) = 0, ∀ t N 0,

since v1 has to befinite at r=0, and u2(r= R2)=0,∀ t N 0 (sink bound-
ary conditions at the sphere external surface).

Finally, the initial conditions are u1(t=0)= rC0 and u2(t=0)= rC0.
Applying the Laplace transform, ũ ¼ ∫

∞

0

u e−ptdt, and setting

q21 ¼ p=D1; q22 ¼ p=D2 ðA3Þ
we get the following subsidiary equations

d2eu1

dr2
−q21eu1 ¼ − rC0

D1
0≤rbR1;

d2eu2

dr2
−q22eu2 ¼ − rC0

D2
R1≤rbR2 : ðA4Þ

with eu1 r ¼ 0ð Þ ¼ 0; eu2 r ¼ R2ð Þ ¼ 0; eu1 r ¼ R1ð Þ ¼ eu2 r ¼ R1ð Þ;
and D1 R1

deu1

dr
−eu1

� �
j
r¼R1

¼ D2 R1
deu2

dr
−eu2

� �
j
r¼R1

The general solutions of the differential Eqs. (A4) are

eu1 ¼ A1 sinh q1rð Þ þ B1 cosh q1rð Þ þ rC0

p
; 0≤rbR1 ðA5Þ

eu2 ¼ A2 sinh q2 r−R1ð Þ½ � þ B2 cosh½q2 r−R1ð Þ� þ rC0

p
; R1≤r b R2 : ðA6Þ

By imposing the boundary conditionswe obtain for theevi ¼ eui=r; i ¼
1;2 that

ev1 ¼ C0

p
− R1R2C0D2q2 sinh rq1ð Þ

rp D2ψ2 R2ð Þ sinh q1R1ð Þ þ D1ψ1 R1ð Þ sinh q2 R2−R1ð Þ½ �f g ðA7Þ

ev2 ¼ C0

p
− R2C0 D2ψ2 rð Þ sinh q1R1ð Þ þ D1ψ1 R1ð Þ sinh q2 r−R1ð Þ½ �f g

rp D2ψ2 R2ð Þ sinh q1R1ð Þ þ D1ψ1 R1ð Þ sinh q2 R2−R1ð Þ½ �f g ðA8Þ

where ψ1(r) = R1q1 cosh(q1r) − sinh(q1r), ψ2(r) = R1q2 cosh[q2(r −
R1)] + sinh[q2(r − R1)].

In order to evaluate v1 and v2we apply the inverse Laplace transform
to the above expressions of ev1 and ev2 [36]. The application to the first
right-hand side (RHS) terms gives integralswhose integrands have sim-
ple poles at λ = 0, yielding contributions of C0. Also, applying the in-
verse Laplace transform to the second RHS terms gives integrals
whose integrands have poles of second order at λ = 0 (yielding total
contributions of −C0), and simple poles at λ = − D1xm

2 , where ±xm,
m = 1, 2,…, are the roots of

D2 kR1x cos k R2−R1ð Þx½ � þ sin k R2−R1ð Þx½ �f g sin R1xð Þ
þD1 R1x cos R1xð Þ− sin R1xð Þf g sin k R2−R1ð Þx½ � ¼ 0

ðA9Þ

and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
.

Eq. (A9) results by considering the denominator of the second RHS
terms of Eqs. (A7) and (A8) equal to zero and setting q1 = xi, q2 = kxi
while substituting the variable p with λ = − D1x

2 [see Eq. (A3)].
The roots of Eq. (A9) are the roots of

D2 kR1x cot k R2−R1ð Þx½ � þ 1f g þ D1 R1x cot R1xð Þ−1f g ¼ 0 ðA10Þ

together with the common roots of

sin R1xð Þ ¼ 0 and sin½k R2−R1ð Þx� ¼ 0 : ðA11Þ

If k(R2 − R1)/R1 is irrational, then the sin(R1x) = 0 and sin[k(R2 −
R1)x] = 0 of Eq. (A11) have no common roots and from the expressions
of ev1 and ev2 we get that

v1 ¼ 2R2C0

r

X∞
n¼1

1
φ xnð Þ sin rxnð Þ sin R1xnð Þ sin k R2−R1ð Þxn½ � exp −D1x

2
nt

� �
ðA12Þ

v2 ¼ 2R2C0

r

X∞
n¼1

1
φ xnð Þ sin

2 R1xnð Þ sin k R2−rð Þxn½ � exp −D1x
2
nt

� �
ðA13Þ
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where xn, n = 1, 2,…, are the roots of Eq. (A10), and

φ xnð Þ ¼ kR1xn sin
2 kxn R2−R1ð Þ½ � þ kxn R2−R1ð Þ sin2 R1xnð Þ

þ1−k2

kR1xn
sin2 R1xnð Þ sin2½kxn R2−R1ð Þ�:

ðA14Þ

However, if k(R2− R1)/R1 is rational, suppose in its lowest terms it is
equal to l / m then the sin(R1x) = 0 and sin[k(R2 − R1)x] = 0 of
Eq. (A11) have common positive roots

x ¼ mnπ
R1

; n ¼ 1;2;3;…:

The above roots give rise to the following additional terms

− 2R2C0

rπ lkþmð Þ
X∞
n¼1

−1ð Þ lþmð Þn

n
sin

mnπr
R1

exp −D1m
2n2π2

R2
1

t

 !
ðA15Þ

and

2R2C0k
rπ lkþmð Þ

X∞
n¼1

1
n
sin

nπl R2−rð Þ
R2−R1

exp −D1m
2n2π2

R2
1

t

 !
ðA16Þ

in the expressions of Eqs. (A12) and (A13) for v1 and v2, respectively.
Moreover, the initial particle concentration equals to

C0 ¼ M∞
Vsphere

¼ M∞
4
3
πR3

2

ðA17Þ

where M∞ denotes the total mass of the diffusive substance, the mass
which exits the composite sphere in infinite time. Now, if we denote
asMt the corresponding mass of the diffusive substance which has left
the matrix in time t, we have

Mt ¼ M∞−
Z Z Z

v1 r; tð ÞdV1−
Z Z Z

v2 r; tð ÞdV2 ; ðA18Þ

where the triple integrals over dV1 and dV2 are over the inner core and
outer shell, respectively.

Substituting in the last equation the expressions (A12) and (A13),
and using Eq. (A17), we obtain for the fractional release

Mt

M∞
¼ 1− 6

R2
2

Σ
∞

n¼1

1
xnφ xnð Þ f

1
xn

sin2 R1xnð Þ−R1xn
2

sin 2R1xnð Þ
� �

sin k R2−R1ð Þxn½ �

þ1
k

R2−
1
kxn

sin k R2−R1ð Þxn½ �−R1 cos k R2−R1ð Þxn½ �
	 


sin2 R1xnð Þg � exp −D1x
2
nt

� �
:

ðA19Þ

Yet, if k(R2 − R1)/R1 is rational we have the additional terms of
Eqs. (A15) and (A16) in the expressions of v1 and v2 that yield the fol-
lowing extra term in the fractional release solution of Eq. (A19)

� 6
π2R2

2 lkþmð Þ Σ
∞

n¼1

R2
1 −1ð Þmnþ lþmð Þn

n2m
þ
k R2−R1ð Þ R2−R1 −1ð Þnl

h i
n2l

8<:
9=;� exp −D1m

2n2π2

R2
1

t

 !
:

ðA20Þ
Eqs. (3), (4) and (5) presented in Subsection 2.1, result from the

Eqs. (A19), (A10) and (A20), respectively, if, for simplicity, we set
Rr = R2/R1, yn = R1xn, φ2(yn) = ynφ(yn) and

φ1 ynð Þ ¼ 1
yn

sin2yn−
yn
2

sin2yn
� �

sin kyn Rr−1ð Þ½ �

þ1
k

Rr−
1
kyn

sin kyn Rr−1ð Þ½ �− cos kyn Rr−1ð Þ½ �
� �

sin2yn:

Note that in the limiting case D1 = D2 = D, where k = 1, the ob-
tained fractional release reduces to the known result of the homoge-
neous sphere (see Eq. (4) of Ref. [32]). Indeed, suppose for simplicity
that Rr − 1 is irrational, to consider the simple case of Eq. (3). In this
case Eq. (4) gives ysin(Rry) = 0 with positive roots y ¼ nπ=Rr, n = 1,
2,…. Thenφ1= Rrsin

2yn andφ2= Rryn
2sin2yn. Therefore, Eq. (3) yields

Mt
M∞

¼ 1− 6
R2
r
∑
∞

n¼1

1
y2n

exp −y2n
D

R2
1

t

 !
¼ 1− 6

π2 ∑
∞

n¼1

1
n2 exp −n2π2 D

R2
2

t

 !
.
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