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Abstract A one dimensional, parity-time (PT )-symmetric
magnetic metamaterial comprising split-ring resonators hav-
ing both gain and loss is investigated. In the linear regime,
the transition from the exact to the broken PT -phase is
determined through the calculation of the eigenfrequency
spectrum for two different configurations; the one with
equidistant split-rings and the other with the split-rings
forming a binary pattern (PT dimer chain). The latter sys-
tem features a two-band, gapped spectrum with its shape
determined by the gain/loss coefficient as well as the in-
terelement coupling. In the presence of nonlinearity, the PT
dimer chain configuration with balanced gain and loss sup-
ports nonlinear localized modes in the form of a novel type
of discrete breathers below the lower branch of the linear
spectrum. These breathers that can be excited from a weak
applied magnetic field by frequency chirping, can be subse-
quently driven solely by the gain for very long times. The
effect of a small imbalance between gain and loss is also
considered. Fundamental gain-driven breathers occupy both
sites of a dimer, while their energy is almost equally par-
titioned between the two split-rings, the one with gain and
the other with loss. We also introduce a model equation for
the investigation of classical PT symmetry in zero dimen-
sions, realized by a simple harmonic oscillator with matched
time-dependent gain and loss that exhibits a transition from
oscillatory to diverging motion. This behavior is similar to a
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transition from the exact to the broken PT phase in higher-
dimensional PT -symmetric systems. A stability condition
relating the parameters of the problem is obtained in the case
of a piece-wise constant gain/loss function that allows the
construction of a phase diagram with alternating stable and
unstable regions.

1 Introduction

The investigation of artificial materials whose properties can
be tailored has recently attracted a lot of attention. Consid-
erable research effort has been invested in the development
of artificial structures that exhibit properties not found in
nature. Two recent and well-known paradigms are the meta-
materials that provide full access to all four quadrants of
the real permittivity–permeability plane [39], and the parity-
time (PT ) symmetric systems, whose properties rely on a
delicate balance between gain and loss. The latter belong to
a class of “synthetic” materials that do not obey separately
the parity (P) and time (T ) symmetries, but instead they do
exhibit a combined PT symmetry. The ideas and notions
of PT -symmetric systems have their roots in quantum me-
chanics where PT -symmetric Hamiltonians have been stud-
ied for many years [13]. The notion of PT symmetry has
been recently extended to dynamical lattices, particularly in
optics, where photonic lattices combining gain and loss ele-
ments offer new possibilities for shaping optical beams and
pulses. Soon after the development of the theory of PT -
symmetric optical lattices [7, 22], the PT -symmetry break-
ing was experimentally observed [11, 28, 35]. Naturally,
such considerations have also been extended to nonlinear
lattices [6, 23] and oligomers [20], and PT -related phenom-
ena like unidirectional optical transport [26], unidirectional
invisibility [21], and Talbot effects [25] were theoretically

Author's personal copy

mailto:nl@physics.uoc.gr


450 G.P. Tsironis, N. Lazarides

investigated. Moreover, it has been shown that optical soli-
tons [1, 2, 6, 33], nonlinear modes [38], and breathers [4, 19]
may also be supported by PT -symmetric systems. More-
over, the application of these ideas in electronic circuits [30],
not only provides a platform for testing PT -related ideas
within the framework of easily accessible experimental con-
figurations, but also provides a direct link to metamaterials
whose elements can be modeled with equivalent electrical
circuits.

Conventional metamaterials comprising resonant metal-
lic elements operate close to their resonance frequency
where unfortunately the losses are intolerably high and ham-
per any possibility for their use in device applications. The
pathways to overcome losses are either to replace the metal-
lic parts with superconducting ones [3] or to construct ac-
tive metamaterials by incorporating active constituents that
provide gain through external energy sources. The latter
has been recently recognized as a very promising tech-
nique for compensating losses [5, 32]. A particular elec-
tronic component that may provide both gain and nonlin-
earity in a metamaterial is the tunnel (Esaki) diode, which
features a current-voltage characteristic with a negative re-
sistance part [8]. Left-handed transmission lines with suc-
cessful implementation of Esaki diodes have been recently
realized [14], although other electronic components may
be employed as well for loss compensation [37]. Thus, the
fabrication of PT -symmetric metamaterials with balanced
gain and loss is feasible with the present technology in
the microwaves, combining highly conducting split-ring res-
onators (SRRs) and negative resistance devices in a way
similar to that in electrical circuits [30]. In this prospect, the
SRR equivalent circuit parameters and the bias of the nega-
tive resistance device should be properly adjusted to provide
gain and equal amount of loss as well as real eigenfrequen-
cies in a finite frequency range of the gain/loss parameter.

In the following, we present a one-dimensional, discrete,
equivalent circuit model for an array of SRRs with alter-
nating gain and loss in the two different configurations
(Sect. 2). In Sect. 3, we present linear eigenfrequency spec-
tra for systems with small number of SRRs and obtain the
expression that provides the eigefrequencies for large sys-
tems. It is shown that PT -symmetric metamaterials undergo
spontaneous symmetry breaking from the exact PT phase
(real eigenfrequencies) to the broken PT phase (at least
one pair of complex eigenfrequencies), with variation of the
gain/loss coefficient. In Sect. 4, where nonlinearity becomes
important, the generation of long-lived nonlinear excitations
in the form of discrete breathers (DBs) [10] is demonstrated
numerically. These novel gain-driven DBs result by a purely
dynamical process, through the matching of the input power
due to gain and internal loss. In Sect. 5, we introduce a
model PT -symmetric system in zero dimensions, realized
by a harmonic oscillator with balanced time-periodic gain

Fig. 1 Electrical equivalent circuit for a split-ring resonator loaded
with a tunnel (Esaki) diode

Fig. 2 Schematic of a PT -symmetric metadimer comprising two tun-
nel diode-loaded SRRs in an alternating magnetic field H(t). The
SRRs are coupled magnetically through their mutual inductance M .
Different bias in the diodes may create a balanced gain/loss structure

and loss that exhibits extraordinary properties and multiple
critical (phase transition) points. Section 6 contains the con-
clusions.

2 Equivalent circuit modelling and dynamic equations

Consider a metallic split-ring resonator (SRR) that can be
regarded as an RLC electrical circuit featuring Ohmic resis-
tance R, inductance L, and capacitance C. A tunnel (Esaki)
diode [8] is connected in parallel with the capacitance C of
the SRR (Fig. 1) forming thus a nonlinear metamaterial ele-
ment with gain. Esaki diodes exhibit a well- defined negative
resistance region in their current-voltage characteristics that
has a characteristic ‘N’ shape. A bias voltage applied to the
diode can move its operation point in the negative resistance
region and then the SRR-diode system gains energy from
the source.

A metadimer comprising two SRRs loaded with tunnel
diodes in an external alternating magnetic field is shown
in Fig. 2. The equivalent circuit parameters R, C, and L

of the SRRs and the bias in the diodes have been ad-
justed so that: (i) the two elements have the same eigen-
frequencies and (ii) one of the SRRs has gain while the
other has equal amount of loss. Then the pair of SRRs
is a PT -symmetric metadimer that may be employed for
the construction of one-dimensional PT -symmetric meta-
materials, which moreover are nonlinear due to the tunnel
diodes. The alternating magnetic field induces an electro-
motive force in each SRR due to Faraday’s law, which in
turn produce currents that couple the SRRs magnetically
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Fig. 3 Schematic of a one-dimensional PT -symmetric metamaterial.
Upper panel: all the SRRs are equidistant. Lower panel: the separa-
tion between SRRs is modulated according to a binary pattern (PT
dimer chain). The applied field is such that the magnetic component is
perpendicular to the plane of the split-ring resonators

through their mutual inductance M (Fig. 2). The coupling
strength between SRRs is rather weak due to the nature
of their interaction (magnetoinductive), and has been cal-
culated accurately by several authors [27, 34]. The SRRs
may also be coupled electrically, through the electric dipoles
that develop in their slits. Thus, in the general case one has
to consider both magnetic and electric coupling between
SRRs. However, for particular relative orientations of the
SRR slits, the magnetic interaction is dominant, while the
electric interaction can be neglected in a first approxima-
tion [9, 12, 31]. As can be seen in Fig. 3, the PT -symmetric
metadimers can be arranged in a one-dimensional lattice in
two distinct configurations; one with all the SRRs equidis-
tant and the other with the SRRs forming a PT dimer chain.

Within the framework of the equivalent circuit model, a
set of discrete differential equations have been used to de-
scribe the dynamics in nonlinear magnetic metamaterials
[15, 18, 24, 27]. Taking into account the binary structure
of the PT dimer chain, the dynamics of the PT -symmetric
metamaterial with balanced gain and loss is governed by the
equations [19] (in normalized form)

λ′
Mq̈2n + q̈2n+1 + λMq̈2n+2 + λ′

Eq2n + q2n+1 + λEq2n+2

+ αq2
2n+1 + βq3

2n+1 + γ q̇2n+1 = ε0 sin(Ωτ) (1)

λMq̈2n−1 + q̈2n + λ′
Mq̈2n+1 + λEq2n−1 + q2n + λ′

Eq2n+1

+ αq2
2n + βq3

2n − γ q̇2n = ε0 sin(Ωτ) (2)

where λM,λ′
M , and λE,λ′

E are the magnetic and electric
coupling coefficients, respectively, with λE,M > λ′

E,M and
λE,Mλ′

E,M > 0, α and β are dimensionless nonlinear coef-
ficients, γ is the gain/loss coefficient (γ > 0), ε0 is the am-
plitude of the external driving voltage, while Ω and τ are
the driving frequency and temporal variable, respectively,
normalized to the inductive–capacitive (LC) resonance fre-
quency ω0 and inverse LC resonance frequency ω−1

0 , re-
spectively, ω0 = 1/

√
LC0 with C0 being the linear capac-

itance. The values selected for the nonlinear coefficients

Fig. 4 Frequency eigenvalues of the free PT -symmetric SRR array
as a function of the gain/loss parameter γ for λE = 0, λM = −0.1, and
(a) N = 2; (b) N = 4; (c) N = 8; (d) N = 16. The arrows indicate the
critical point γc for the exact-to-broken PT phase transition. Only the
real eigenfrequencies is shown for clarity

α = −0.4, β = 0.08 are typical for a diode and they pro-
vide a soft on-site nonlinear potential. They can be obtained
from a Taylor expansion of the capacitance to voltage rela-
tion of an equivalent circuit diode model that gives a very
good approximation for weakly driven systems [18, 36].

3 Linear eigenfrequency spectra and critical point

In order to obtain the critical value of γ = γc that separates
the exact PT -phase, where all the eigenvalues are real, from
the broken PT -phase, where at least one pair of eigenval-
ues is complex, we calculate the linear frequency spectrum.
This is a straightforward procedure for systems with a rel-
atively small number of SRRs; the roots of the determinant
of the linearized Eqs. (1) and (2) for ε0 = 0 are obtained
with a root-finding algorithm and then plotted against the
gain/loss parameter γ . In Figs. 4 and 5, the real eigenfre-
quencies of PT -symmetric metamaterials in both configu-
rations are shown as a function of γ , while the arrows in-
dicate the critical point γc in each case. Thus, for γ < γc

all eigenvalues are real, while in the opposite case, at least
one pair of eigenvalues has become complex. As we can see
from the figures, for γ > γc more and more eigenfrequency
pairs become complex with increasing γ , until they all be-
come complex for a particular value of γ . Moreover, as we
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Fig. 5 Frequency eigenvalues of the free PT -symmetric dimer
chain as a function of the gain/loss parameter γ for λE = λ′

E = 0,
λM = −0.1, λM = −0.05, and (a) N = 2; (b) N = 4; (c) N = 8;
(d) N = 16. The arrows indicate the critical point γc for the exac-
t-to-broken PT phase transition. Only the real eigenfrequencies is
shown for clarity

can see from an inspection of Figs. 4 and 5, obtained for
the equidistant SRR configuration and the PT dimer chain,
respectively, the value of γc decreases rapidly with increas-
ing number of SRRs N for the former configuration, while
it tends to a constant value for the latter configuration. This
can be seen more clearly in Fig. 6, where the critical point
γc is plotted as a function of N for both configurations. For
the curves corresponding to equidistant SRRs (correspond-
ing to two different values of the magnetic coupling coeffi-
cient λM ), we see that γc is smaller as the magnetic coupling
coefficient λM lowers. However, in both curves correspond-
ing to equidistant SRRs, the value of the critical point γc

tends to zero with increasing N . In contrast, for the PT
dimer chain configuration, the value of γc tends to a con-
stant finite value, which approximately equals the absolute
difference of the magnetic coupling coefficients λM and λ′

M

(see below).
For large systems, we can obtain a condition that deter-

mines the critical point γc as a function of the magnetic cou-
pling constant(s). In the standard way, we substitute into the
linearized Eqs. (1) and (2) for ε0 = 0 the trial solutions

q2n = A exp
[
i(2nκ − Ωτ)

]
, (3)

q2n+1 = B exp
{
i
[
(2n + 1)κ − Ωτ

]}
, (4)

Fig. 6 Dependence of the critical gain/loss parameter value γc on
the number of SRRs, N , for magnetically coupled SRRs in both the
equidistant and dimer chain configuration. The black squares and the
red diamonds have been calculated for the former configuration with
λM = −0.1 and λM = −0.05, respectively. The green circles have been
calculated for the latter configuration with λM = −0.1, λ′

M = −0.05.
The lines serve as a guide to the eye

where κ is the normalized wavevector. Then, by requesting
nontrivial solutions for the resulting stationary problem, we
obtain

Ω2
κ = (−b ±

√
b2 − 4ac

)
/(2a), (5)

where

a = 1 − (
λM − λ′

M

)2 − μκμ′
κ , (6)

b = γ 2 − 2
[
1 − (

λE − λ′
E

)(
λM − λ′

M

)]

+ εκμ′
κ + ε′

κμκ, (7)

c = 1 − (
λE − λ′

E

)2 − εκε′
κ , (8)

and

εκ = 2λE cos(κ), ε′
κ = 2λ′

E cos(κ), (9)

μκ = 2λM cos(κ), μ′
κ = 2λ′

M cos(κ). (10)

In the following, we neglect the electric coupling between
SRRs, i.e., λE = λ′

E = 0, for simplicity. Then Eq. (5) re-
duces to

Ω2
κ =

2 − γ 2 ±
√

γ 4 − 2γ 2 + (λM − λ′
M)2 + μκμ′

κ

2(1 − (λM − λ′
M)2 − μκμ′

κ)
. (11)

The condition for having real Ωκ for any κ then reads

cos2(κ) ≥ γ 2(2 − γ 2) − (λM − λ′
M)2

4λMλ′
M

. (12)

It is easy to see that for λM = λ′
M corresponding to the

equidistant SRR configuration, the earlier condition cannot
be satisfied for all κ’s for any positive value of the gain/loss
coefficient γ , implying that a large PT -symmetric SRR ar-
ray (Fig. 3, upper panel) will be in the broken phase. To the
contrary, for λM �= λ′

M , i.e., for a PT dimer chain (Fig. 3,
lower panel), the above condition is satisfied for all κ’s for
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Fig. 7 Frequency bands for a PT -symmetric dimer chain with bal-
anced gain and loss for λM = −0.17, λ′

M = −0.10, and γ = 0.05
(black solid); γ = 0 (red dotted curves). The gaps are indicated in a
green (dark) color

γ ≤ γc � |λM − λ′
M |, (γ 4 � 0). In the exact phase (γ < γc),

the PT -symmetric dimer array has a gapped spectrum with
two frequency bands, as shown in Fig. 7. For fixed γ , the
width of the gap separating the bands decreases with de-
creasing |λM − λ′

M |. For γ � γc the gap closes, some fre-
quencies in the spectrum acquire an imaginary part and the
PT metamaterial enters into the broken phase. Note that
the gain/loss coefficient γ has little effect on the disper-
sion curves of the PT dimer chain (compare with the dotted
curves where γ is set to zero), as long as the sign in front of
γ alternates from one SRR to another.

4 Gain-driven breather excitations

For a gapped linear spectrum, large amplitude linear modes
become unstable in the presence of driving and nonlinear-
ity. If the curvature of the dispersion curve in the region of
such a mode is positive and the lattice potential is soft, large
amplitude modes become unstable with respect to forma-
tion of DBs in the gap below the linear spectrum [29]. For
the parameters used in Fig. 7, the bottom of the lower band
is located at Ω0 � 0.887, where the curvature is positive.
The corresponding period at the bottom of the lower band is
T0 = 2π/Ω0. Moreover, the SRRs are subjected to soft on-
site potentials for the selected values of the nonlinear coef-
ficients α and β . Then DBs can be generated spontaneously
by a frequency chirped alternating driver; after turning off
the driver, the breathers are driven solely by gain. A similar
procedure has been applied successfully to lossy nonlinear
metamaterials with a binary structure [16, 17, 24]. The re-
sults are illustrated in Figs. 8 and 9, where the case of a slight
imbalance between gain and loss and its effect on breather
generation has been also considered. In these figures, a den-
sity plot of the local energy En of a PT -symmetric meta-
material is shown on the n–τ plane for two different values
of the driving amplitude ε0.

In the following, Eqs. (1) and (2) implemented with the
boundary conditions

q0(τ ) = qN+1(τ ) = 0, (13)

that accounts for the termination of the structure in finite
systems, are integrated with a fourth-order Runge–Kutta al-
gorithm with a fixed time-step. In order to prevent instabil-
ities that will result in divergence of the energy at partic-
ular sites in finite time, we consider a longer dimer chain
with total number of SRRs N + 2N�; then we replace the
gain with equivalent amount of loss at exactly N� SRRs at
each end of the extended chain. In other words, we embed
the PT -symmetric dimer chain into a geometrically iden-
tical lossy chain, in order to help the excess energy to go
smoothly away during evolution, living behind stable (or at
least very long-lived) breather structures. We use the follow-
ing procedure described in detail in [19]:

• At time τ = 0, we start integrating Eqs. (1) and (2) from
zero initial state without external driving for 500T0 �
3500 time units (t.u.) to allow for significant development
of large amplitude modes.

• At time τ � 3500 t.u., the driver is switched-on with
low-amplitude ε0 and frequency slightly above Ω0

(1.01Ω0 � 0.894). The frequency is then chirped down-
ward with time to induce instability for the next 10600 t.u.
(∼1500T0), until it is well below Ω0 (0.997Ω0 � 0.882).
During that phase, a large number of excitations are gen-
erated that move and strongly interact to each other, even-
tually merging into a small number of high amplitude
breathers and multibreathers.

• At time τ � 14100 t.u. (point A on Figs. 8 and 9), the
driver is switched off and the DBs that have been formed
are solely driven by the gain. They continue to interact
for some time until they reach an apparently stationary
state and get trapped at particular sites. The high density
segments between the points A and C in Figs. 8 and 9
precisely depict those gain-driven DB structures.

• At time τ ∼ 440000 t.u. (point C on Figs. 8 and 9), the
gain is replaced everywhere by equal amount of loss, and
the breathers die out rapidly.

Note that the above procedure of breather generation is
very sensitive to parameter variations of the external fields.
Even though the values of the driving amplitudes in Figs. 8
and 9 are rather close (i.e., ε0 = 0.085 and 0.095, respec-
tively), the breather structures as well as their numbers are
different. In Fig. 8(b), in the balanced gain/loss case, we
observe two distinct structures that have been formed that
correspond to a relatively high amplitude multibreather and
a low amplitude breather. These structures remain station-
ary during the long time interval they have been followed
(>56000T0). In Figs. 8(a) and 8(c), gain and loss are not
perfectly matched; in Fig. 8(a), loss exceeds gain by a small
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Fig. 8 Spatiotemporal evolution of the energy density En for a
PT -symmetric dimer chain with N = 70, N� = 10, Ω0 = 0.887,
γ = 0.002, λM = −0.17, λ′

M = −0.10 (λE = λ′
E = 0), ε0 = 0.085,

γ = 0.002 and (a) excess loss 0.2 %; (b) balanced case; (c) excess
gain 0.2 %

amount while in Fig. 8(c) gain exceeds loss by the same
small amount. Notably, breather excitations may still be
formed through the frequency chirping procedure in the
presence of a small amount of either net gain or net loss.
Indeed, as we may observe comparing Figs. 8(a) and 8(c)
with Fig. 8(b), the same structures are formed [except the
low amplitude breather that is not visible in Fig. 8(c)]. When
loss exceeds gain [Fig. 8(a)] the multibreather losses its en-
ergy at a low rate, with its excited sites that are closer to
its end-points gradually falling down to a low amplitude
state. Similarly, when gain exceeds loss [Fig. 8(c)], the high
amplitude multibreather slowly gains energy and becomes
wider. In both cases, breather destruction will take place in
a time-scale that depends exponentially on the gain/loss im-
balance. Thus, in an experimental situation, where gain/loss

Fig. 9 Spatiotemporal evolution of the energy density En for a
PT -symmetric dimer chain with N = 70, N� = 10, Ω0 = 0.887,
γ = 0.002, λM = −0.17, λ′

M = −0.10 (λE = λ′
E = 0), ε0 = 0.095,

γ = 0.002 and (a) excess loss 0.2 %; (b) balanced case; (c) excess
gain 0.2 %

balance is only approximate, it will be still possible to ob-
serve breathers at relatively short time-scales.

Similar observations hold for Fig. 9 as well. In this figure,
we observe three relatively high amplitude multibreather
structures that are formed both in the balanced [Fig. 9(b)]
and the imbalanced case [Fig. 9(a) and Fig. 9(c), for net loss
and gain, respectively]. Here, we also observe that instabili-
ties may appear even after long time intervals of apparently
stationary breather evolution. Whenever this happens, DBs
start moving through the lattice until they get once more
trapped at different lattice sites. In Fig. 9(b), such an insta-
bility appears between 200000–250000 t.u. for the two nar-
rower multibreather structures. The one of them gets trapped
a few tenths lattice sites away from its previous position,
while the other (the narrowest) collides and it is absorbed by
the wide multibreather located at n ∼ 50.
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5 Classical PT -symmetry in zero dimensions

In the classical domain, in all cases of PT -symmetric sys-
tems investigated so far, the combination of time-reversal
and parity symmetries is utilized: In a given time-evolution,
if we reverse time while “reflecting” position and momen-
tum, we must retrace the original path. The parity operation
requires that the system is extended either in continuous or
discrete space in order to be able to perform this operation.
We show here that this is not necessary and that the features
of the PT -symmetric systems can be preserved in “zero”
dimensions where the parity symmetry is trivial.

We consider the following simple harmonic oscillator:

ẍ + 2θ(t)ẋ + ω2
0x = 0, (14)

where x ≡ x(t) is the equilibrium displacement of a mass
(the charge in an RLC circuit), ω0 the resonant oscillator
frequency while θ(t) is a time-dependent “damping” term;
both ω0 and θ(t) are scaled to the mass (impedance of the
circuit). We take θ(t) to be periodic with period T , viz.
θ(t + T ) = θ(t) while its values may be both positive and
negative, i.e., for some part of the period the oscillator expe-
riences damping while in the rest of the period time amplifi-
cation, or anti-damping. We investigate the oscillator evolu-
tion after long time and the stability of the motion. Instead
of addressing a general periodic function θ(t), we focus on
a simple form that makes the problem readily solvable, viz.
we take

θ(t) =
{+γ if 0 ≤ t < τ1,

−γ if τ1 ≤ t < τ2,
(15)

where T = τ1 + τ2 and taking the plus (minus) sign in
front of the coefficient γ (γ is defined as a positive con-
stant, γ > 0 that may assume any value between zero and
unity) we have in the first (second) part of the cycle loss
(gain). With this form of piece-wise constant function θ(t),
we can easily solve Eq. (14) for the loss (L) segment of
time duration τ1 and gain (G) segment of duration τ2. The
form of Eq. (15) permits to view the problem as mapping of
the position-velocity vector at a given time to the position-
velocity vector at a later time; if in the beginning of the gain
(loss) period (assuming t = 0) we have position and velocity
equal to (x0, ẋ0). Then after the evolution during time τ (τ1

or τ2, respectively) we obtain:

(
x

ẋ

)
= MG/L(τ)

(
x0

ẋ0

)
(16)

where for gain we have

MG(τ1) = eγ τ1

δ

×
(

δ cos δτ1 − γ sin δτ1 sin δτ1

−ω2
0 sin δτ1 δ cos δτ1 + γ sin δτ1

)
(17)

and for the loss, respectively,

ML(τ1) = e−γ τ2

δ

×
(

δ cos δτ2 + γ sin δτ2 sin δτ2

−ω2
0 sin δτ2 δ cos δτ1 − γ sin δτ2

)
(18)

where δ =
√

ω2
0 − γ 2. Using the mapping, we may obtain

long time evolution after N periods T as a repetitive ap-
plication of the matrices MG(τ1) and ML(τ2) to an arbi-
trary initial state (x0, ẋ0). Since the matrices ML/G(τ)e±γ τ

are unimodular, the long time evolution with be dominated
by the exponential term exp[Nγ (τ1 − τ2)]; this leads triv-
ially to exponential growth (τ1 > τ2) or exponential decay
(τ1 < τ2). As a result, we consider the more interesting case
with τ1 = τ2 = τ ≡ T/2; in this case the gain and loss power
is perfectly matched during the period T . The combined
propagation matrix after one period (assuming first gain) is
simply M(T ) = ML(τ)MG(τ), i.e.,

M(T ) = 1

δ2

(
M11 M12

M21 M22

)
(19)

where Mij are given by

M11 = −γ 2 + ω2
0 cos(2φ), (20)

M12 = +2 sinφ(δ cosφ + γ sinφ), (21)

M21 = −2ω2
0 sinφ(δ cosφ − γ sinφ), (22)

M22 = −γ 2 + ω2
0 cos(2φ) (23)

and φ = δτ ≡ δT /2. The matrix M is clearly also unimodu-
lar with eigenvalues eiμ and e−iμ; since the trace of a matrix
is invariant we find

cosμ = −γ 2 + ω2
0 cos 2φ

δ2
. (24)

Stability equation Equation (24) can be re written as

cosμ = 1 − B2 cos 2φ

1 − B2
= 1 + 2B2 sin2 φ

1 − B2
(25)

with B = ω0
γ

. In order to have stable motion, it is necessary

that | cosμ| ≤ 1, or −1 ≤ 1 + 2B2 sin2 φ

1−B2 ≥ 1, leading to

−2 ≤ 2B2 sin2 φ

1 − B2
≤ 1. (26)
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Fig. 10 Phase diagram on the γ –τ plane for the harmonic oscillator
with time-dependent “damping” term, obtained from Eq. (29). The sta-
bility region is indicated in a blue (dark) color

Equation (26) has solutions only for |B| > 1 or |γ | < ω0, for
ω0 > 0; in the latter case, we find

| cosφ| ≥
∣∣∣∣
γ

ω0

∣∣∣∣. (27)

The range thus of allowed values for the angle φ (γ > 0) is

γ

ω0
≤ cosφ ≤ 1,

−1 ≤ cosφ ≤ − γ

ω0
. (28)

We note that there are multiple allowed solutions marked by
the lines cosφ = ±γ /ω0, i.e., for the three parameters of the
problem γ , T = 2τ and ω0, the transcendental equation

cos(δτ ) =
{+ γ

ω0
for 2nπ − π/2 < δτ < 2nπ + π/2,

− γ
ω0

for 2πn + π/2 < δτ < 2πn + 3π/2,

where n = 0,±1,±2, . . . , marks the onset of the transi-
tion from stable to unstable evolution. This is the equiva-
lent to the PT transition from the exact (stable) to the bro-
ken (unstable) phase in this zero-dimensional problem. Us-
ing Eq. (27), we construct a PT phase diagram on the τ–γ

plane (Fig. 10), where the blue (dark) color indicates regions
of stability. If we fix one of the parameters, the variation of
the other drives the oscillator through alternating stable and
unstable regions, as can be readily observed from Fig. 10.

Introducing the frequency ω = 2π/T ≡ π/τ , we define
the reduced parameters Ω = ω/ω0 and γ̃ = γ /ω0. Then the
equation that controls the stability regions becomes

∣∣∣∣cos

[
π

√
1 − γ 2

Ω

]∣∣∣∣ = γ, (29)

where the tilde has been dropped for simplicity. Equation
(29) has solutions for |γ | < 1; for different reduced frequen-
cies Ω we obtain different number of solutions of the earlier
equation, the number of the latter increases with decreasing
frequency ω. Once we have the solutions of Eq. (29), we can

Fig. 11 Density plot of the logarithm of the frequency spectra of x(t),
y = log10{PS[x(t)]}, as a function of γ . The discrete frequency com-
ponents of the spectra for each value of γ are indicated with a blue
(darker) color

find the regimes of stability and instability. Consider the res-
onant case Ω = 1 where the external frequency of gain/loss
alternation matches the self-frequency of the oscillator. Be-
sides the trivial solution at γ = 0, the numerical solution of
Eq. (29) gives γ1 ≈ 0.676 so that the stable region is in the
range 0 ≤ γ ≤ γ1. For Ω = 0.5, the corresponding solutions
are γ1 ≈ 0.54, γ2 ≈ 0.80, and γ3 ≈ 0.90 with two stability
regions, i.e., 0 ≤ γ ≤ γ1 and γ2 ≤ γ ≤ γ3.

The stable solutions of Eq. (14) as a function of time
t are in general quasiperiodic oscillations whose spectral
content varies both with τ and γ . For an illustration, we
consider a particular value of τ , i.e., τ = 2π (Ω = 0.5)
for which the boundaries of the stability regions have been
calculated above. For the interval with relatively low val-
ues of γ , 0 ≤ γ ≤ γ1 � 0.54, that is more physically rele-
vant, we present a density plot of the logarithm of the fre-
quency spectra of x(t), y = log10{PS[x(t)]}, as a function
of γ (Fig. 11). In this figure, the discrete frequency compo-
nents of the spectra for each value of γ are indicated in dark
(blue) color. For γ = 0 and very close to zero, the only fre-
quency appearing in the spectrum is the eigenfrequency of
the oscillator Ω � 1. With increasing γ , the frequency com-
ponents at Ω � 1 ± 0.5 become more and more important.
At about γ = 0.15, these half-integer frequency components
start splitting into pairs of frequencies that are symmetric
around the half-integer values. The separation between these
pairs increases with further increasing γ , and the frequency
components from neighboring pairs come closer and closer
together until they eventually merge for γ approaching its
critical value γ1 � 0.54.

6 Conclusions

We have investigated theoretically a PT -symmetric nonlin-
ear metamaterial relying on gain and loss. Eigenfrequency
spectra for linearized systems of either small and large N

and two different configurations were calculated and the
critical points γc were determined. Large PT -symmetric
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metamaterials with the dimer chain configuration exhibit
phase transitions for the exact to the broken PT -symmetry
phase, while large PT -symmetric metamaterials with the
equidistant SRR configuration are always in the broken PT
phase.

In the presence of nonlinearity, we have demonstrated nu-
merically the a PT -symmetric dimer chain supports local-
ized excitations in the form of discrete breathers. Breathers
are excited by a purely dynamical process, with a frequency
chirped external magnetic field that induces instability in a
zero initial state. Subsequently, the nonlinearity focuses en-
ergy around points that have acquired high amplitude lead-
ing to the formation of localized structures. The external
field is then switched off and those localized structures are
then solely driven by the gain, the excess energy lives the
system through its lossy parts at the ends, leading eventu-
ally to breather generation.

Remarkably, slight imbalance between gain and loss does
not destroy the breathers instantly; they can still be gen-
erated through the frequency chirping procedure and they
can be regarded as stationary for relatively short time inter-
vals. In the long term, the imbalanced breathers either gain
constantly energy and diverge or constantly lose energy and
vanish. The time-scale for the latter events depends expo-
nentially from the amount of imbalance.

We have introduced a “zero-dimensional” PT system
that can be realized by a harmonic oscillator with a “damp-
ing” term that provides balanced gain and loss, through al-
ternation of the sign of the damping coefficient. We con-
sider a piecewise linear gain/loss function and obtain a sta-
bility condition, i.e., a relation between the parameters of
the problem. We thus obtain a “phase diagram” with param-
eter regions where oscillatory (stable) motion and diverging
(unstable) motion occur; by crossing the stability boundary
marks, the onset of the transition from stable to unstable evo-
lution that is equivalent to the PT transition from the exact
to the broken phase in this zero-dimensional problem.
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