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We consider the properties of the large acoustic polarons in a media composed of three parallel cou-
pled identical macromolecular chains in an equilateral triangular arrangement. The existence of the truly
three-dimensional large polarons has been demonstrated. Their appearance demands the complex inter-
ference of the effects of the reduced dimensionality, the nature and strength of the interchain coupling
and particular geometrical arrangement of molecular chains. Different types of solutions were found and
criteria for their existence were formulated in terms of the dimensionless interchain coupling parameter.
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1. Introduction

The studies of the electronic properties of the substances con-
sisting of just a few coupled chains of linearly arranged atoms,
molecules or molecular groups, are of the particular practical and
scientific interest. The practical interest stems from the potentially
widespread use of the quasi-one-dimensional (Q1D) media, such
as DNA, conjugated polymers, highly conducting organic salts, as
the molecular wires in design and fabrication of the micro and
nano-sized electronic devices [1-5]. On the fundamental side, pri-
mary interest represents the understanding in which way the in-
terplay of the two opposing trends, reduced dimensionality and
the interchain coupling, affects the electronic properties of the Q1D
media. On one hand, excess charge or energy carriers in low di-
mensional (1D in particular) systems, should always be accompa-
nied by the local distortion of the surrounding crystal lattice [6-
8]. Therefore, it is expected that the transfer processes would be
achieved by means of the polaron mechanism. On the other hand,
realistic Q1D media do not behave as the ideal 1D systems because
of the inevitable interchain coupling which tends to destabilize the
polaron and to prevent its confinement to a single chain [9,10].
For that reason, the elucidation of the possible mechanisms for
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charge transport in these media has not been unequivocally suc-
cessful so far. Especially challenging situation arises in the adia-
batic limit when electron bandwidth highly exceeds the maximal
phonon energy and effectively 1D polaron occupies the large num-
ber of lattice sites. Its energy lies below the bottom of the con-
duction band, while its transport properties cannot be understood
on the basis of the band theory [11-15]. In particular, large polaron
behave as a classical (Newtonian) particles and propagate along the
chain over the large distances in a form of solitary wave preserving
their shape for a long time with minimal losses of energy [6-8,11-
15].

In the realistic conditions, the interchain coupling may sub-
stantially affect the large polaron dynamics. Nevertheless, it can-
not fully destabilize polaron, instead, it produces substantially new
properties of charge carriers [16-32]. In the case of two cou-
pled chains two different types of polaron solutions were observed
[23,32]: below the critical interchain coupling, polaron is located at
one of the chains (asymmetric polaron); when coupling parameter
exceeds the critical value, symmetric solutions, corresponding to a
polaron equally shared among the chains, appear.

In the case of more (3,4..) coupled chains, situation is much
more complex and besides the strength of the interchain coupling,
polaron features are determined by their particular spatial arrange-
ment which may be pretty diverse in the dependence of their
number. Thus for example, three coupled parallel chains could be
either confined to a single plane (coplanar structure), or arranged
in a triangular form. In both variants, molecules (molecular groups)
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Fig. 1. Spatial arrangement of the molecular chains in model system considered
here, b is the distance between chains.

may be positioned exactly opposite to each other, or may be some-
what shifted along the chain. Finally, some substances, «-helix, for
example, consist of spirally twisted chain of hydrogen-bonded pep-
tide group which may be viewed as three interlacing chains. In all
mentioned cases polaron may have specific properties which de-
mand separate investigation.

In the recent article [33] we have considered structure com-
posed of three coplanar chain and found that polaron features in
these media substantially differ from those predicted for the po-
larons in the two-chain media [18-20,22-24,27-32] or in the infi-
nite 2D systems [6-8,34]. That is, the appearance of the effectively
2D polarons was predicted. Their longitudinal radius highly ex-
ceeds the lattice constant along the chain, while the transverse one
ranges from zero, in the absence of the interchain coupling, to ap-
proximately twice of the separation between the chains when the
interchain coupling strength tends towards the infinity. They rep-
resent both energetically and dynamically stable configuration. The
increase of the interchain coupling strength enhances their stabil-
ity so that they may be comparably more stable than the pure 1D
polarons.

In this paper we study further the polaron properties in a three
chain Q1D media. We consider an extra electron in a 3D struc-
ture composed of three parallel coupled identical macromolecular
chains in an equilateral triangular arrangement with molecules po-
sitioned exactly opposite to each other, as presented at Fig. 1. Each
chain is composed of N > 1 molecules (molecular groups). As a
theoretical framework we adopt the model based on an ordinary
1D electron-phonon Hamiltonian with additional term which ac-
counts for the interchain coupling of the electronic excitation on
adjacent chains. Only the coupling with acoustic modes will be
considered. Phonons are considered to be purely one dimensional
and they will be accounted in the harmonic approximation.

Provided that the system parameters satisfy adiabatic condition,
dynamics of the excess charge and energy carriers strongly inter-
acting with lattice modes, may be described within the semiclas-
sical variational theory of Pekar [6]. At this stage we shall skip all
unessential formal aspect, which were elaborated in details in our
previous publications [32,33], and we start employing the set of
coupled nonlinear Schrédinger equations (NSE) for polaron wave
functions on particular chains [32,33]:

2
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Here j enumerates macromolecular chains, which are directed
along the x-axis. Due to the supposed cyclic structure, polaron
wave functions have to satisfy the following conditions:

\Ijo = \IJ3, and \IJ4 = \Ijl. (2)

+ G| W —L(Wjr + W) ) =0, (1)

The nonlinearity factor of NSE is G(v) = 4Eg/(1 — ‘C’—;), with v be-

0
ing the polaron velocity; ¢y = awg denotes speed of sound, while a
stands for the lattice constant.

Lattice dynamics is determined by the maximal phonon fre-
quency wg = /k/M, where k is the stiffness of the particular
chain, and M is molecular mass. Electron-phonon interaction is
characterized by the so-called small-polaron binding energy Ep =
4X2/Ma)g (x is the electron-phonon coupling parameter).

Electronic subsystem is characterized by the intrachain J and
the interchain L electronic excitation transfer integrals. Depending
on the particular physical context, the signs of J and L may be
either positive or negative. In the processes of the charge trans-
fer (electron or hole migration in conducting polymers, DNA, etc.)
both intrachain (J) and interchain (L) are commonly taken as pos-
itive [35,36]. In the case of charge transfer in Peierls dielectrics
it is commonly taken that L < 0. Nevertheless, in some cases, L
is of the opposite sign or may even alternate along the chain:
L— L+ (=1L [18].

In the case of the intramolecular energy transfer
[16,17,22,25] dipole-dipole interaction is responsible for both
intra- and interchain coupling and the signs of corresponding
exchange integrals are determined by the dipole orientation. We
assume that within the single chain dipoles are all aligned and J >
0. On the other hand, dipoles at different chains are either parallel
(L < 0) or anti-parallel (L > 0).

Detailed discussion on the validity of semiclassical ansatz would
be superfluous, instead we briefly summarize the criteria when it
holds:

2] > Eg > hwy (3)

The above relation should be understood as follows [6,7,37,38]: the
condition 2] > hwg provides the applicability of semiclassical ap-
proximation, while Eg > hwq corresponds to the strong coupling
regime; finally, 2] > Ep provides that polaron size significantly ex-
ceeds lattice constant.

2. Spectra of linear excitations

Following [33] we first discus the spectra of the linear modes.
Thus, putting the G = 0 and taking the solutions in the form
\I/j(X, l') :Ajeikx—(i/h)s(k)t (4)
we obtain the following set of the algebraic equations for unknown
amplitudes
(€ (k) — Ja?k*)A; — L(Aj1 +Aj_1) = 0. (5)

Further, we can choose A; = ei¢fBj, where B; are real. In such a way
the last system becomes:

(e (k) — Ja2k?)B,ei%i — L[Bj+1ei¢1+‘ v Bj,le"%'—l] ~0 (6)

Now, we multiply each of these equations by e~#1 and separate
real from imaginary parts. In such a way we obtain the two sets of
equations for polaron amplitudes and phases:

(e(k) — Ja’k?®)B; cos(¢pj—¢1)—L Z Bj,icos(@j — 1) =0, (7)

I=+1

(e(k) —Ja®k*)Bjsin(¢; — ¢p1) —L Y Bjyysin(dj. —¢1) =0. (8)
I=+1

The last system is satisfied for all B; provided that the phase
differences are integer multiples of 7:

o1 —¢j=sm, (s=0,1,2,...). (9)
System (7) may be viewed as homogeneous system of equations

for variables B; = B; cos(¢1 — ¢;). Secular equation yields three so-
lutions, one of which is doubly degenerated:

1
co(k) = Ja?k? + 2L, B =By = B3 = +—,
o(k) =] 1=B=B=+7%
&12(k) :](12](2 —L, Bi=By=-B3= ii. (10)

V3
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3. Nonlinear modes

System of Eq. (1) is invariant with respect to the following sym-
metry transformations:

« Cyclic permutation: W —Wy; WyrsWg; Wi Wy

« Mirror symmetry: Wqi—>Wy; Wy Wq; Wi Ws,

« Inversion symmetry: Wy > —Wy; W) > —Wy; W3 > —W3
« Parity: x —~ —x.

Also, different combinations of the listed symmetries are pos-
sible, for example inversion mirror symmetry: W) > —Ws3; W3
—\Ilz; \I/] g —\Ij].

One of the consequences of the above symmetry relations is
the existence of the following simple types of the solutions (which
happen to be the only types of the solutions):

- symmetric: Wy = Wy = W3

 antisymmetric: V; = —W,, W3 =0,

« partially symmetric: W; = W, # W3, Apparently, any cyclic per-
mutation of indices yields fully equivalent set of solutions.

In order to determine under which conditions particular type
of solution exists, we perform analysis based on the average pro-
file approximation [39-45] and choose the solutions of the system
(1) in the following form:

Wi(x, t) = Aj(t)elkevDy (x ). (11)

Here, ¥ (x, t) is real function chosen in the form of pure 1D soliton
solution:

v(x,t) =\/gsech{l%(x—xo—vt)}, (12)

coefficient u = G/4J, and polaron quasi-momentum k = m;" (m* =
h%/2Ja%) were found after the substitution of (11) into (1), and
separating imaginary from the real part. Finally, xq is the polaron
center of mass coordinate, it is irrelevant in the present context.
Polaron amplitudes Aj(t) satisfy the set of difference-differential
equations:

. dA; 2
lhditjzaAj-i-L(Aj,] +Aj+1)—g|Aj| Aj, (13)
where Ay = A3, A4 = A, and

_mr? GA(v)  GE(V)

(14)

2 Tag 8T 1y
We look for the stationary solutions of (13) in the form A; =

e‘i“’fBj, where amplitudes B; may be chosen as real functions. In
this manner we find:

(hw — a)B; = L(Bi,1 + Bi_1) — gB7, (15)

B} + B +Bj=1. (16)

Clearly, By = B3, B4 = Bj.
By the elimination of the (hw —a) from (15), it is possible to
rearrange this system of equations into the following form:

(B1 — B3)[L(By + By + B3) + gB1B2(B1 +B,)] =0,
(By — B3)[L(By + By + B3) + gB2B3(B; +B3)] =0,
(B1 — B3)[L(By + By + B3) +gB1B3(B; +B3)] =0. (17)

Polaron ground state energy corresponds to adiabatic functional
[32,33] with v =0 and reads:

1
& =2A(B1By + B1B3 + ByB3) — j(B;‘+B‘2‘+B‘3‘) (18)

where & = % is polaron ground state energy, normalized to g,

and A =L is interchain coupling parameter, its intensity, |A| rep-

resents the strength of the interchain coupling.

3.1. Types of solutions

As mentioned above, the system (17) may have three types of
solutions: (a) fully symmetric solution, B; = B, = B3; (b) partially
symmetric solutions, B; =B; # By, (i,j,k=1,2,3; i# j#k); and
(c) antisymmetric solutions B; = —B,, B3 = 0. In further, we inves-
tigated all three possibilities.

3.1.1. Symmetric solutions
In accordance with the normalization condition, symmetric so-
lutions are simply

1
Bi=+—, Vi=1,2,3, (19)
T3
while the ground state energy is linear in coupling parameter:
1
Es =2\ — 3 (20)

3.1.2. Antisymmetric solutions
In this case all amplitudes are different: By # B, # Bs, so that
the system of Eq. (17) becomes:

[L(B1 + By + B3) + gB1B2(By + By)]| =0

[L(B1 + By + B3) + gB2B3(Ba +B3)| =0

[L(By + By +B3) +gB1B3(B; +B3)] = 0. (21)
Combining these equations we easily obtain

B3(B1 — B2)(B1 + By +B3) = 0.

By(B1 — B3)(B1 + By +B3) = 0.

B1(By — B3)(B1 + By +B3) = 0. (22)
After the disregarding the solutions of type B; = B;, j # i which are

not in accordance with condition that all solutions are different,
we are left with two possibilities:

Bi=0;i=1,2,3 (23)
or (and)
Bi1 +B, +B3; =0. (24)

They are equivalent, as can be seen after the substitution of the
last one into the system (17) which then becomes

B1By(B1 4+ B) =0,

B3B3 (B2 4+ B3) =0,

B3Bi(B; +B;) = 0. (25)
By adding and subtracting B3, B; and B, respectively in the brack-
eted terms, we finally got

B{B;B; =0, (26)

By = —B,, By =0,
B, = —B3 B; =0,

B3 = —B;,B, =0. (27)
That is, the antisymmetric solutions are:

B; = -B, Ei%, B; =0,

B, = —Bs Ei%, B; =0,

B3 = —B; Ei%,BZ:OA (28)

In this case, polaron ground state energy attains the following
form:

1
Eas = —A — i (29)
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3.1.3. Partially symmetric solutions

Here, we have three equivalent set of solutions: B; = B3 #
By; By = By # B3; By = B3 # By. Due to the symmetry with respect
to cyclic permutation we may focus to one particular case, say
By = B3 # By, while the remaining ones may be obtained by the
permutation of the indices i = 1, 2, 3. From (17) we find:

_BiBy(By + By)
2B + B, ’
while, from normalization condition we have:

B, =+,/1-2B3. (31)

The sign + can be understood in the sense that the polaron am-
plitudes By and B, may have the same sign or the opposite signs,
thus the + (—) sign corresponds to the case B;B, > 0 (B{B, < 0).
Additionally, from (31) one can see that polaron amplitudes B; and
B; may have the values only within the interval (0, 1/+/2), while
the values of amplitude B, lie in the interval (0, 1). For further
analysis it is useful to introduce new parameter m e (0, ), such
that B; = B3 = /m, and B, = ++/1 — 2m. In such a way, the depen-
dence of the polaron amplitudes on the strength of the interchain
coupling may be written as set of parametric equations:

By =B3=+m

Bz:y/]—zm

A= (30)

m«/1—-2m
A=—ym(1=-2m)+ ———— 32
( )+2«/ﬁ+\/1—2m (32)
for B;B, > 0, and
By =B3;=Jm
By =—y1-2m
my1—2m
A=m(l-2m)— 33
( ) 2J/m— 1 -2m (33)

for B]Bz < 0.
By means of the above results we may express the polaron
ground state energy (18) in parametric form as follows:

& = k(m+2,/m(l _2m)) - %(1 —4m+6m*); BB, > 0

E_=A(m—2 m(l—2m))—1

5(1 —4m+6m?); B1B; <0 (34)

4. Analysis of solutions

The results of preceding analysis are presented in Figs. 2-4. In
Fig. 2, we have plotted the polaron amplitudes versus coupling pa-
rameter for all three types of solutions.

Apparently, each particular type of solution exists in the entire
range of A. In particular, apart the narrow region - —0.254 < A <
0.074 - system of equations for polaron amplitudes has the three-
fold solutions: for each A there are three solutions, one of each
type. For —0.254 < A < 0.074, the “knot area”, all three polaron
amplitudes (B;) have multiple solutions for one value of A.

To determine the conditions under which each of the above so-
lutions represent the optimal eigenstate of the system, we com-
pare corresponding energies - Fig. 3. The basic requirement for
large polaron stability is that its energy lies below the energy of
the bottom of the band of linear modes. Among all of the polaron
branches only those which minimize the system ground state en-
ergy are physically meaningful. Graphical summary is presented in
Fig. 4 where we plotted the polaron amplitudes versus the inter-
chain coupling parameter for optimized solutions. Apparently, the
antisymmetric solutions are energetically unstable in the whole in-
terval of A.
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Fig. 2. Polaron amplitudes versus coupling parameter.
1
TN _ | Partially symmetric
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1 solufibng B;B,>0

Antisymmetric

solutions

Fig. 3. The dependence of the ground state energy on coupling parameter. Dashed
line corresponds to the energy of the pure 1D polaron, while dash-dotted and dash
double dotted lines represent the energy of linear modes.

Symmetric polaron minimizes &£ for all values of A up to a lower
boundary of the “knot area” (A; = —0.254): that is for A < A[,
amplitudes on each chain have the same value and orientation.
These solutions are dynamically stable for all —co < A < A; (see the
Appendix A).

Partially symmetric solutions appear when coupling parameter
exceeds A;. They are energetically the most favorable for —0.254 <
A < 0.36. When coupling parameter exceeds 0.36 polaron becomes
unstable with respect to free (band) states, whose energy lies be-
low the energy of the polaron branch. For coupling parameter
from the interval —0.254 < A < 0, stable solutions correspond to
B1By > 0; That is, all three amplitudes are aligned. As a func-
tion of the coupling parameter, amplitude of By 3 gradually de-
creases from 1/+/6 towards the zero; in the same time amplitude
of B, increases from m towards unity. Particular case A =0
corresponds to uncoupled chains and polaron confinement to sin-
gle chain occurs: amplitudes By 3 disappear, while B, approaches
unity. After switching on coupling again (A > 0) amplitudes By,
and B, become anti-parallel (B;B, < 0). As coupling strength in-
creases By(z) — i\/ﬁ and B, — ,/2/3. These solutions are stable
for all A > 0.
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Fig. 5. Left-hand side of the inequality (39) versus coupling parameter.

5. Concluding remarks

The most important result of this study is the demonstration
of the possible existence of the truly 3D large polarons in triple
chain media. The existence of such quasiparticles is provided by
the particular geometrical arrangement of chains (Fig. 1). These en-
tities cannot exist in bulk media, where transverse coupling desta-
bilize effectively 1D polarons, and where only the free (delocalized)
and severely localized (small-polaron), may be expected [6-8]. We
found that the energies of the symmetric and partially symmetric
solutions are always below the energy of pure 1D polaron. Thus,
up to A ~ 0.36, effectively 3D large polaron is energetically and
dynamically more stable with respect to its 1D counterpart.

The properties of these 3D quasiparticles are determined by the
nature of the intrachain interaction which is formally determined
by the sign of parameter A. Thus, for A < A, polaron is equally
distributed among the macromolecular chains - B? = B3 = B2. This,
effectively 3D entity, possesses relatively large extent in the lon-
gitudinal direction ( ~ 1/u >» 1), while the transverse ones are
practically equal to interchain separation. When coupling param-
eter approaches the critical value A = —0.254, we observe the bi-
furcation from the symmetric to partially symmetric solution: the
polaron amplitude increases on one macromolecular chain, while
it decreases on other two chains. Naturally, in the absence of cou-
pling ( A = 0), polaron becomes confined to a single chain. By fur-
ther increasing of the ratio A (i.e. for A > 0) this essentially 1D po-
laron gradually becomes truly 3D quasiparticle: it is highly peaked

on one chain, while the amplitudes on the other two are compa-
rably smaller. Similarly to the symmetric solutions, partially sym-
metric ones are truly 3D entities, and irrespectively of the values of
system parameters, there is no confinement to a single chain. In-
creasing of interchain coupling leads to the destabilization of these
polarons whose energy for A > 0.36, overgrows the energy of band
states. In that respect, these polarons fundamentally differs from
the ones in the twin-chain structures where, above the bifurcation
point, truly 1D polarons, cannot appear.

Polaron motion may substantially affect its character and stabil-
ity. Due to the quasi-relativistic dependence of the nonlinear pa-
rameter G(v) on polaron velocity, effective interchain coupling de-
creases as v approaches the speed of sound. This enhances the po-
laron confinement to a single chain and supports its stability: the
energy of faster polaron is deeper below the bottom of the energy
of band states.

The current simple model encompasses only the most essen-
tial physical ground governing the transport processes in some
realistic Q1D media. The establishment of the quantitative corre-
spondence with experimental data and possible implementation in
nano- or micro-electronic devices, should be based on more elab-
orate ground.
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Appendix A. Polaron stability - the linear mode analysis

In order to analyse dynamical stability, we perform the stan-
dard linear perturbation theory [4G]. Only the symmetric and
partially symmetric solutions were considered; the antisymmetric
ones were not considered since their energy always lies above the
energies of these two types.

Following the standard procedure [32,46], we linearize sys-
tem of equation for polaron amplitudes assuming A;(t) = (B; +
SA(t))et, Here, 8A;(t) denote the small corrections of the polaron
amplitudes for which we got the following system of evolution
equations:

d (ReSA(t)\ (0 B)(RedA(t)
dt\ImS8A(t) ) — \ A 0)\ImSA(t)

Here, the following abbreviations were introduced:

Re SA(t) = (ﬁﬁ ?ﬁlﬁii) Im SA(t) = (ﬁm gﬁ;g;) (35)

Now, we chose “small corrections” in the form:
SA;(t) = 8A;(0) - e, (36)

where v is the instability growth rate, while §A;(0) denote the sta-
tionary part of solution.

Instability growth rate (v) was found from the condition that
the above system has the non-trivial solutions. Stable solutions
correspond to vanishing or pure imaginary instability growth.
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(a) Symmetric solutions By = By = B3 = +1/v/3

In this case we have A= 2ng and B =0 while the instability
growth rate (v = 0): i.e., symmetric solutions are always dynami-
cally stable.
(b) Partially symmetric solutions By = B3 # B,

In this case A, B represents 2 x 2 matrices given by

e L§: + 2B} -L
B 2L 2L +2gB}

-1 L
B= ( oL _2L%L) (37)
2

Secular equation for v is simply
V2 L6BIBI 4L

St b S-S} 38
2 g BB (38)
Apparently, stable solutions corresponds to :
L\? L
y= <§) +6BIB} > 0. (39)

As illustrated in Fig. 5, the above condition is satisfied for all A
for which partially symmetric solutions minimizes polaron energy.
That is, they are both energetically and dynamically stable.
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