

ΣΕΜΙΝΑΡΙΟ ΚΕΝΤΡΟΥ ΚΒΑΝΤΙΚΗΣ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ & NANOTEXNOΛΟΓΙΑΣ/ CCQCN SEMINAR

Wednesday, 18 November 2015 11:00-12:00

3rd Floor Seminar Room

Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

Dr Celestino Creatore

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

Abstract

Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new and promising direction for the future development of photovoltaic devices. In this talk, I will develop such a paradigm and present a few schemes based on the nanoscale architecture and molecular elements of photosynthetic light-harvesting complexes. I will show how quantum interference effects induced by the dipole-dipole interaction between molecular excited states may lead to enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters and optimised dipolar geometries. These results open a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.

