Magnetic transport in 1D materials

Xenophon Zotos

Department of Physics University of Crete

Foundation for Research and Technology - Hellas

CCQCN

acknowledgments

- H. Castella
- F. Naef
- A. Metavitsiadis
- C. Psaroudaki

NOVMAG + LOTHERM

• C. Hess, B. Büchner (Dresden)

- A. Revcolevschi (Paris)
- P.v. Loosdrecht (Kroningen)
- J. Giapintzakis (Cyprus)
- D. Lakehal (Zürich)
- P. Prelovšek (Ljubljana)

integrable quantum correlated systems can show unconventional - ballistic- charge, spin, thermal transport at all temperatures

novel - magnetic - mode of heat transport

• • • • • • • •

background¹

 $egin{array}{rcl} m{D} &\sim& eta m{C}_{jj} \ \sigma^{''} &=& egin{array}{c} m{D} \ \omega
ightarrow 0 \ \sigma_{dc}' &\sim& eta \int_0^\infty dt \langle j(t) j
angle \end{array}$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

¹W. Kohn 1964

Mazur inequality²

$$\begin{bmatrix} Q_n, H \end{bmatrix} = \mathbf{0}, \quad \langle Q_m Q_n \rangle = \delta_{mn}$$
$$\langle j(t) j \rangle_{t \to \infty} \sim C_{jj} \ge \sum_n \frac{\langle j Q_n \rangle^2}{\langle Q_n^2 \rangle}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

²P. Mazur 1969

S = 1/2 Heisenberg model

$H = J \sum_{l=1}^{L} S_{l}^{x} S_{l+1}^{x} + S_{l}^{y} S_{l+1}^{y} + \Delta S_{l}^{z} S_{l+1}^{z}$

- J > 0 antiferromagnet
- $\Delta < 1$ easy-plane
- Δ > 1 easy-axis
- $\Delta = cos(\pi/\nu)$

Bethe ansatz integrable model

conservation laws ³

$Q_3 = j^E$

^{*a*} diverging κ

^aD. Huber, J.S. Semura 1969, T. Niemeijer, H.A.W. van Vianen 1971, A. Klümper, K. Sakai 2002

spin conductivity

•
$$D(T) \geq rac{\beta}{2L} rac{\langle j^z Q_3 \rangle^2}{\langle Q_3^2 \rangle}$$

•
$$\beta \rightarrow 0$$

•
$$D(T) \geq \frac{\beta}{2} \frac{8\Delta^2 m^2(1/4 - m^2)}{1 + 8\Delta^2(1/4 + m^2)}$$

•
$$m = \langle S^z \rangle$$

³X.Z., F. Naef, P. Prelovšek 1997

S = 1/2 scenario

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶

expertise

exact analytical methods

Bethe ansatz

numerical simulations exact diagonalization (microcanonical)

Lanczos

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

S = 1 Heisenberg model⁴

⁴J. Karadamoglou, X.Z. 2004

2-leg S = 1/2 ladder⁵

 $\kappa \sim (J/J_{\perp})^2$

⁵X.Z. 2004

A novel mode of thermal transport ⁶

⁶A. Revcolevschi, C. Hess, B. Büchner, A. Sologubenko, H.R. Ott, Y. Koike 🕤 < 🗠

Sr_2CuO_3

magnetic thermal transport

- highly directional
- electrically insulating
- "metallic" $J \sim \epsilon_F$
- "mechanical" switching

Figure 5: Single crystalline samples. a) pure $Ca_9La_5Cu_{24}O_{41}$, b) Zn (2%) doped Ca $_9La_5Cu_{24}O_{41}$, c) cleaved 1% Mg-doped Sr_2CuO_3 , d) (1%) Mg-doped $SrCuO_2$.

<ロト < 回 > < 回 > < 回 > < 回 >

Figure 1: Schematic illustration of a thermal management problem. A hot spot in a microelectronic structure is generating unwanted heat. This heat could on one hand hamper the performance of the heat releasing structure. On the other hand, heat sensitive structures in its proximity could be damaged. A possible strategy for dissipating the heat is to use a layer with high thermal conduction to guide the heat to a heat sink. Left: A conventional heat conductor is normally roughly isotropic (3D heat conductor). The lateral temperature gradient is therefore small and sensitive structures have to be placed far away. **Right**: In the case of a quasi onedimensional heat conductor heat is channeled away and sensitive structures can be placed much closer.

<ロト <回ト < 注ト < 注)

Figure 2: Left panel: Thermal image on the ab plane of $La_5Ca_9Cu_{24}O_{41}$ showing very localized symmetric heating after a 40 ms heat pulse. Right panel: similar image on the ac plane showing a highly asymmetric streaked heating pattern due to the large magnon heat conductivity in the (diagonal) c-direction.

Sr_2CuO_3 from 2N to 4N

magnetic contribution

mean free path

memory function approach

- XY model, $J_{eff} = \frac{\pi}{2}J$
- spin-phonon decoupling
- optical phonon ω_0

1 magnetic impurity ⁷

unique system - κ ballistic

Kondo physics

Kane - Fisher (1992)

- 1 weak link + Luttinger liquid
- repulsive interaction \rightarrow *cutting* of chain at T = 0
- attractive interaction \rightarrow *healing* of chain at T = 0

Eggert - Affleck - Römmer, Furusaki - Hikihara

- antiferromagnetic spin-1/2 Heisenberg chain at T = 01 magnetic impurity $\mathbf{S} \rightarrow cutting$
- $\Delta < 0$ (attractive) \rightarrow *healing*

・ロット (雪) (日) (日)

cutting vs. healing

500

ъ

puzzle: SSM vs. FFM method ⁸

3- layer toy model (m + p) - p - (m + p)interface - "cut" chain L = L/2 + cut + L/2

phenomenology

・ロット 御マ キョマ キョン

⁸PRL **110**, 147206 (2013)

perspectives

- ballistic vs. diffusive
- BA matrix elements
- coupling to phonons
- switsching
- thermal rectification

• ...

