Simulations in graphene

George Kalosakas Materials Science Dept., Univ. of Patras ICEHT, FORTH CCQCN, Physics Dept., Univ. of Crete Greece

CRETE CENTER FOR QUANTUM COMPLEXITY AND NANOTECHNOLOGY

Atomistic simulations in graphene

In-plane **bond stretching** and angle bending interatomic potentials are derived using first principles methods (DFT) in appropriately deformed graphene configurations

Kalosakas, Lathiotakis, Galiotis, Papagelis, J. Appl. Phys. 113, 134307 (2013)

Mechanical response: Application of various loads

Uniaxial stress along the zigzag edge

Uniaxial stress along the armchair edge

Hydrostatic pressure

Shear stress along the armchair/zigzag edge

Equilibrium under the application of a uniaxial force

Start with the equilibrium structure of a graphene (without any force) containing 7482 or 17030 atoms

Apply a constant force at all atoms in the two edges

Follow with MD the evolution of the system, applying a friction term at each atom

The system goes to a new equilibrium compatible to the applied forces

Strain distribution

Distribution of strains along the horizontal/vertical lines of the graphene structure (at the end of the simulation)

F = 1.5 eV/A

Graphene uniaxial stress response II

Comparison of calculated elastic constants with experimental and other theoretical results

2d Elastic constant: $E_{2D} = 320 \text{ N/m}$ \rightarrow effective Young modulus $E_{eff} = E_{2D}/0.335 \text{ nm} = 0.96 \text{ TPa}$

Experimental estimate: $E_{2D} = 340 \pm 50 \text{ N/m}$ $\Rightarrow E_{eff} = 1.0 \pm 0.1 \text{ TPa}$

Lee et al., *Science* **321**, 385 (2008)

Other theoretical results:

 $E_{eff} = 1.05$ TPa (in both directions)Liu, Ming, Li, Phys. Rev. B 76, 064120 (2007) $E_{eff} = 1.05 \cdot 1.06$ TPaZakharchenko, Katsnelson, Fasolino, Phys. Rev. Lett. 102, 046808 (2009) $E_{eff} = 1.1$ TPa (0.6 TPa in the other direction)Gao, Hao, Physica E 41, 1561 (2009)Values of Ein the range 0.5 - 3.5 TPa have been reported in the literature

Values of E_{eff} in the range 0.5 – 3.5 TPa have been reported in the literature

Comparison of calculated intrinsic strength with experimental and other theoretical results

2d Intrinsic strength: $\sigma_{2D} = 39-45$ N/m (32-34 N/m in the other direction) \rightarrow effective intrinsic strength $\sigma_{eff} = \sigma_{2D}/0.335$ nm = 120-130 GPa (100 GPa)

Experimental estimate: $\sigma_{2D} = 42 \pm 4 \text{ N/m}$ $\Rightarrow \sigma_{eff} = 130 \pm 20 \text{ GPa}$

Lee et al., *Science* **321**, 385 (2008)

Other theoretical results:

 $\sigma_{\rm eff} = 121 \text{ GPa}$ (110 GPa in the other direction)

Liu, Ming, Li, Phys. Rev. B 76, 064120 (2007)

Deformations of bond lengths and angles

Comparison with linearized force fields

Graphene nanoribbons

Current projects

- Effect of defects (vacancies, line defects, etc.) in the elastic properties of graphene.
- Phonon Dispersion obtained from MD through the velocity autocorrelation function.

Dynamic response under strain. Raman G-band splitting.

Raman shift, cm⁻¹

Force fields and mechanical properties of Boron-Nitride

 $E_{eff} = E_{2D}/0.33nm = 0.79 \text{ TPa}$ (~80% of graphene)

Summary

- Analytical empirical potentials (bond stretching and angle bending) have been provided for atomistic MD simulations of graphene in 2D.
- The mechanical response of graphene is examined using atomistic MD simulations and DFT calculations
- Various kinds of loads have been investigated (uniaxial stresses, hydrostatic pressure, shear stresses)
- The obtained elastic parameters are in good agreement with experimental as well as other theoretical results

Collaborators

K. Papagelis, C. Galiotis Dept. Materials Science, Univ. Patras & ICEHT/FORTH, Greece

N.N. Lathiotakis Theoretical and Physical Chemistry Institute, NHRF, Greece

Thanks \$\$:

Thales program GRAPHENECOMP, EU (ESF) & Greek Ministry of Education (E $\Sigma\Pi$ A)

European Union MAN European Social Fund Co-finance

Co-financed by Greece and the European Union

DFT calculations

Generalized Gradient Approximation with PBE functionals (satisfactory description for solids)

Calculations are performed on one cell (dimensions $a_1 x a_2$), using periodic boundary conditions. A *fixed strain* is applied on the y direction and the energy of the equilibrated structure is found.

The corresponding force is obtained through the derivative of $E(a_2)$

Graphene as a membrane: bending experiments

Measurement of the mechanical properties of monolayer graphene suspended over open holes onto SiO_2 substrate using AFM nanoidentation

A value of E=340±50 N/m has been derived from fitting an approximate function F=f(δ) to the experimental data

Lee, Wei, Kysar, Hone, *Science* **321**, 385 (2008)

Fracture under uniaxial stress I

F = 2.5 eV/A

Gao, Hao, *Physica E* **41**, 1561 (2009)

F = 3.1 eV/A

Gao, Hao, *Physica E* **41**, 1561 (2009)

Fracture under shear stress

Graphene distortion under shear stress

