Spin angular momentum in extreme nonlinear optics: Controlling the polarization of high-order harmonics

Oren Cohen

Solid State Institute and Physics Department, Technion, Israel

QCN kick of meeting

Extreme Nonlinear Optics Group @ Technion

PI: Oren Cohen

Spin angular momentum in extreme nonlinear optics

Avner Fleischer, Ofer Kfir, Tzvi Diskin, Pavel Sidorenko and Oren Cohen

Experiment: mixing of waves with controlled polarizations

Spin angular momentum in extreme nonlinear optics

Avner Fleischer, Ofer Kfir, Tzvi Diskin, Pavel Sidorenko and Oren Cohen

Experiment: mixing of waves with controlled polarizations

Main achievements

- Spin angular momentum in XNLO
- Full control over polarization of high-order harmonics using a simple knob, without compromising efficiency.
- Missing quanta for conservation of angular momentum

Spin angular momentum in extreme nonlinear optics

Avner Fleischer, Ofer Kfir, Tzvi Diskin, Pavel Sidorenko and Oren Cohen

Experiment: mixing of waves with controlled polarizations

Main achievements

- Spin angular momentum in XNLO
- Full control over polarization of high-order harmonics using a simple knob, without compromising efficiency.
- Missing component for conservation of angular momentum

Outline

- Introduction to extreme nonlinear optics
- High harmonic generation:
 - Polarization
- Controlling the polarization of HHG
- Spin angular momentum conservation

High Harmonic Generation

Intense femtosecond pulse interacts with a gas generates high harmonics.

A. McPherson *et al.*, JOSA B 4, 595 (1987)
M. Ferray et al., J. of Phys. 21, L31 (1988).
Kulander, K. C., *et al.* Laser Physics 3, 359 (1993)
P. B. Corkum, PRL 71, 1994 (1993)
M. Lewenstein et al., PRA 49, 2117 (1994)

Sources of Extreme UV & X-rays

Ellipticity Effect

Circularly & Elliptically Polarized HHG

Circularly & Elliptically Polarized HHG

Circularly polarized HHG

Long, S., et al., PRA **52**, 2262 (1995) Pioneering experiment by Eichmann, H. et al., PRA 51, R3414 (1995) Milošević, D. B., et al., PRA 61, 063403 (2000) Alon, O., et al., PRL 80, 3743 (1998) Nobusada, K., and Yabana, K., PRA **75**, 032518 (2007) Yuan, K. J., et al., PRA **84**, 023410 (2011) Lewis, Z. L., et al., OL 37, 2415 (2012) Husakou, A., Opt. Exp. 19, 25346 (2011) Yuan & Bandrauk, PRL 110 023003 (2013) Elliptically polarized HHG Weihe, F. A., et al., PRA **51**, R3433 (1995) Strelkov, V. V. et al., PRL **107**, 043902 (2011) Zhou, X., et al., PRL **102**, 073902 (2009) Yuan, K. J. and Bandrauk., A. D., PRA **83**, 063422 (2011) Fleischer, A., et al., OL **38**, 223 (2013)

Counter-Rotating Bi-Chromatic Driver

High harmonic generation with counter-rotating

circularly-polarized bi-chromatic fields

Comparable efficiency to HHG by lineally polarized driver

HH signal for 1.2W red & 0.67W blue

Comparable efficiency to HHG by lineally polarized driver

HH signal for 1.2W red & 0.67W blue

Circularly-polarized HHG

Measured circularity

$$\varepsilon_{19} = 0.95$$

 $\varepsilon_{19}^{theo} = 1$

• Sub-cycle synchronization of 3 recollisions

$$\begin{cases} a_x(t) = a_1(t) + \cos\left(120^\circ\right)a_1\left(t - \frac{T}{3}\right) + \cos\left(240^\circ\right)a_1\left(t - \frac{2T}{3}\right) \\ a_y(t) = 0 + \sin\left(120^\circ\right)a_1\left(t - \frac{T}{3}\right) + \sin\left(240^\circ\right)a_1\left(t - \frac{2T}{3}\right) \\ \Rightarrow \qquad \boxed{\varepsilon_{3k\pm 1} = 1} \end{cases}$$

High harmonic generation with counter-rotating

elliptically-polarized bi-chromatic fields

• Changing α , β .

Rich spectra – Resolved channels

Rich spectra – spin angular momentum

Spin conservation $|\sigma| \le 1$ $\sigma_{HHG} = f(\alpha)n_1 - n_2$ 19H: (7,6) $f(\alpha) = 1 \rightarrow \sigma_{HHG} = +1$ $f(\alpha) = 5/7 \rightarrow \sigma_{HHG} = -1$

20H: (6,7) $f(\alpha) = 1 \rightarrow \sigma_{HHG} = -1$

 $\Omega_{HHG} = n_1 \cdot \boldsymbol{\omega}_1 + n_2 \cdot \boldsymbol{\omega}_2$

Rich spectra – spin angular momentum

Controlling HHG ellipticity

• Changing α by as little as 8⁰ modifies the polarization of H19 from circular (ϵ =1) to linear (ϵ =0).

Discrepancy in conservation of spin angular momentum

• H19.65 should remain circularly-polarized regardless of the value of α .

 α [deg]

Experiment and numerics indicate the opposite!

Additional (radiation or electronic) quanta

Possible solutions:

Conservation law hold true for harmonic pairs:

$$\Omega_{(n_1,n_2)} + \Omega_{(n_2,n_1)} = (n_1 + n_2) \cdot \omega + (n_1 + n_2) \cdot 1.95\omega$$

$$\sigma_{(n_1,n_2)} + \sigma_{(n_2,n_1)} = (n_1 + n_2) \cdot \sigma_1 + (n_1 + n_2) \cdot \sigma_2$$

\rightarrow quantum optics

Medium transfers angular momentum

- Strong-field \rightarrow anisotropic media
- \rightarrow Process is not parametric
- → HHG spectroscopy of circulating current
 @ attosecond resolution

Summary

- Full control over polarization of HHG
 - by attosecond & angle control over the 2D recollissions
- Role of spin angular momentum in extreme NLO
- **Resolve** (n_1, n_2) channels using single-atom physics
- Conservation of spin angular momentum:
 - Qualitative agreement with experimental & numerical results
 - Quantitative disagreement with experimental & numerical results
 - \rightarrow missing quanta. Radiation or electronic?

Next...

- High spatiotemporal imaging of magnetic domains.
- Molecules
- Attosecond pulses with circular and elliptic polarization
- Phase Matching

Eisebitt, S., *et al.*, Nature **432**, 885 (2004) (by synchrotron)